YES
0 QTRS
↳1 DependencyPairsProof (⇔, 0 ms)
↳2 QDP
↳3 DependencyGraphProof (⇔, 0 ms)
↳4 QDP
↳5 QDPOrderProof (⇔, 263 ms)
↳6 QDP
↳7 QDPSizeChangeProof (⇔, 0 ms)
↳8 YES
a(lambda(x), y) → lambda(a(x, p(1, a(y, t))))
a(p(x, y), z) → p(a(x, z), a(y, z))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
p(x, y) → x
p(x, y) → y
A(lambda(x), y) → LAMBDA(a(x, p(1, a(y, t))))
A(lambda(x), y) → A(x, p(1, a(y, t)))
A(lambda(x), y) → P(1, a(y, t))
A(lambda(x), y) → A(y, t)
A(p(x, y), z) → P(a(x, z), a(y, z))
A(p(x, y), z) → A(x, z)
A(p(x, y), z) → A(y, z)
A(a(x, y), z) → A(x, a(y, z))
A(a(x, y), z) → A(y, z)
a(lambda(x), y) → lambda(a(x, p(1, a(y, t))))
a(p(x, y), z) → p(a(x, z), a(y, z))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
p(x, y) → x
p(x, y) → y
A(lambda(x), y) → A(y, t)
A(lambda(x), y) → A(x, p(1, a(y, t)))
A(p(x, y), z) → A(x, z)
A(p(x, y), z) → A(y, z)
A(a(x, y), z) → A(x, a(y, z))
A(a(x, y), z) → A(y, z)
a(lambda(x), y) → lambda(a(x, p(1, a(y, t))))
a(p(x, y), z) → p(a(x, z), a(y, z))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
p(x, y) → x
p(x, y) → y
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(lambda(x), y) → A(y, t)
A(lambda(x), y) → A(x, p(1, a(y, t)))
POL(1) = 0
POL(A(x1, x2)) = x1 + x2
POL(a(x1, x2)) = x1 + x2
POL(lambda(x1)) = 1 + x1
POL(p(x1, x2)) = max(x1, x2)
POL(t) = 0
a(lambda(x), y) → lambda(a(x, p(1, a(y, t))))
a(p(x, y), z) → p(a(x, z), a(y, z))
a(a(x, y), z) → a(x, a(y, z))
a(x, y) → x
a(x, y) → y
p(x, y) → x
p(x, y) → y
lambda(x) → x
A(p(x, y), z) → A(x, z)
A(p(x, y), z) → A(y, z)
A(a(x, y), z) → A(x, a(y, z))
A(a(x, y), z) → A(y, z)
a(lambda(x), y) → lambda(a(x, p(1, a(y, t))))
a(p(x, y), z) → p(a(x, z), a(y, z))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
p(x, y) → x
p(x, y) → y
From the DPs we obtained the following set of size-change graphs: