0 QTRS
↳1 QTRSRRRProof (⇔, 79 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 28 ms)
↳4 QTRS
↳5 QTRSRRRProof (⇔, 0 ms)
↳6 QTRS
↳7 DependencyPairsProof (⇔, 0 ms)
↳8 QDP
↳9 DependencyGraphProof (⇔, 0 ms)
↳10 AND
↳11 QDP
↳12 UsableRulesProof (⇔, 0 ms)
↳13 QDP
↳14 QDPSizeChangeProof (⇔, 0 ms)
↳15 YES
↳16 QDP
↳17 UsableRulesProof (⇔, 0 ms)
↳18 QDP
↳19 QDPSizeChangeProof (⇔, 0 ms)
↳20 YES
↳21 QDP
↳22 UsableRulesProof (⇔, 0 ms)
↳23 QDP
↳24 MRRProof (⇔, 0 ms)
↳25 QDP
↳26 PisEmptyProof (⇔, 0 ms)
↳27 YES
↳28 QDP
↳29 UsableRulesProof (⇔, 0 ms)
↳30 QDP
↳31 MRRProof (⇔, 0 ms)
↳32 QDP
↳33 QDPSizeChangeProof (⇔, 0 ms)
↳34 YES
↳35 QDP
↳36 UsableRulesProof (⇔, 0 ms)
↳37 QDP
↳38 QDPSizeChangeProof (⇔, 0 ms)
↳39 YES
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(+(x1, x2)) = x1 + 2·x2
POL(-(x1, x2)) = x1 + x2
POL(0) = 0
POL(1) = 0
POL(BS(x1)) = 2·x1
POL(I(x1)) = 2·x1
POL(L(x1)) = 1 + x1
POL(Log(x1)) = 2·x1
POL(Log'(x1)) = x1
POL(Max(x1)) = 1 + 2·x1
POL(Min(x1)) = x1
POL(N(x1, x2, x3)) = 2 + x1 + 2·x2 + 2·x3
POL(O(x1)) = 2·x1
POL(Size(x1)) = x1
POL(Val(x1)) = 2 + x1
POL(WB(x1)) = 2·x1
POL(and(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = x1 + x2
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(l) = 2
POL(not(x1)) = 2·x1
POL(r) = 2
POL(true) = 0
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(+(x1, x2)) = x1 + x2
POL(-(x1, x2)) = x1 + x2
POL(0) = 0
POL(1) = 0
POL(I(x1)) = 2·x1
POL(Log(x1)) = 2 + 2·x1
POL(Log'(x1)) = 2 + 2·x1
POL(N(x1, x2, x3)) = 1 + x1 + x2 + 2·x3
POL(O(x1)) = 2·x1
POL(Size(x1)) = 2·x1
POL(WB(x1)) = 2·x1
POL(and(x1, x2)) = x1 + 2·x2
POL(false) = 0
POL(ge(x1, x2)) = 2·x1 + 2·x2
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(l) = 0
POL(not(x1)) = x1
POL(r) = 0
POL(true) = 0
Log'(0) → 0
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(+(x1, x2)) = x1 + x2
POL(-(x1, x2)) = x1 + x2
POL(0) = 0
POL(1) = 0
POL(I(x1)) = 2·x1
POL(Log(x1)) = 1 + 2·x1
POL(Log'(x1)) = 2·x1
POL(O(x1)) = 2·x1
POL(and(x1, x2)) = 1 + x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = x1 + x2
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(not(x1)) = x1
POL(true) = 0
and(x, true) → x
and(x, false) → false
Log(x) → -(Log'(x), I(0))
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
+1(O(x), O(y)) → O1(+(x, y))
+1(O(x), O(y)) → +1(x, y)
+1(O(x), I(y)) → +1(x, y)
+1(I(x), O(y)) → +1(x, y)
+1(I(x), I(y)) → O1(+(+(x, y), I(0)))
+1(I(x), I(y)) → +1(+(x, y), I(0))
+1(I(x), I(y)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
-1(O(x), O(y)) → O1(-(x, y))
-1(O(x), O(y)) → -1(x, y)
-1(O(x), I(y)) → -1(-(x, y), I(1))
-1(O(x), I(y)) → -1(x, y)
-1(I(x), O(y)) → -1(x, y)
-1(I(x), I(y)) → O1(-(x, y))
-1(I(x), I(y)) → -1(x, y)
GE(O(x), O(y)) → GE(x, y)
GE(O(x), I(y)) → NOT(ge(y, x))
GE(O(x), I(y)) → GE(y, x)
GE(I(x), O(y)) → GE(x, y)
GE(I(x), I(y)) → GE(x, y)
GE(0, O(x)) → GE(0, x)
LOG'(I(x)) → +1(Log'(x), I(0))
LOG'(I(x)) → LOG'(x)
LOG'(O(x)) → IF(ge(x, I(0)), +(Log'(x), I(0)), 0)
LOG'(O(x)) → GE(x, I(0))
LOG'(O(x)) → +1(Log'(x), I(0))
LOG'(O(x)) → LOG'(x)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
GE(0, O(x)) → GE(0, x)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
GE(0, O(x)) → GE(0, x)
From the DPs we obtained the following set of size-change graphs:
GE(O(x), I(y)) → GE(y, x)
GE(O(x), O(y)) → GE(x, y)
GE(I(x), O(y)) → GE(x, y)
GE(I(x), I(y)) → GE(x, y)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
GE(O(x), I(y)) → GE(y, x)
GE(O(x), O(y)) → GE(x, y)
GE(I(x), O(y)) → GE(x, y)
GE(I(x), I(y)) → GE(x, y)
From the DPs we obtained the following set of size-change graphs:
-1(O(x), I(y)) → -1(-(x, y), I(1))
-1(O(x), I(y)) → -1(x, y)
-1(O(x), O(y)) → -1(x, y)
-1(I(x), O(y)) → -1(x, y)
-1(I(x), I(y)) → -1(x, y)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
-1(O(x), I(y)) → -1(-(x, y), I(1))
-1(O(x), I(y)) → -1(x, y)
-1(O(x), O(y)) → -1(x, y)
-1(I(x), O(y)) → -1(x, y)
-1(I(x), I(y)) → -1(x, y)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
O(0) → 0
-1(O(x), I(y)) → -1(-(x, y), I(1))
-1(O(x), I(y)) → -1(x, y)
-1(O(x), O(y)) → -1(x, y)
-1(I(x), O(y)) → -1(x, y)
-1(I(x), I(y)) → -1(x, y)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
O(0) → 0
-^12 > 0 > -2 > 1 > O1 > I1
0=1
1=2
O_1=5
I_1=3
-_2=0
-^1_2=0
+1(O(x), I(y)) → +1(x, y)
+1(O(x), O(y)) → +1(x, y)
+1(I(x), O(y)) → +1(x, y)
+1(I(x), I(y)) → +1(+(x, y), I(0))
+1(I(x), I(y)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
+1(O(x), I(y)) → +1(x, y)
+1(O(x), O(y)) → +1(x, y)
+1(I(x), O(y)) → +1(x, y)
+1(I(x), I(y)) → +1(+(x, y), I(0))
+1(I(x), I(y)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
O(0) → 0
+1(O(x), I(y)) → +1(x, y)
+1(I(x), O(y)) → +1(x, y)
+1(I(x), I(y)) → +1(+(x, y), I(0))
+1(I(x), I(y)) → +1(x, y)
POL(+(x1, x2)) = x1 + x2
POL(+1(x1, x2)) = x1 + 2·x2
POL(0) = 0
POL(I(x1)) = 1 + 2·x1
POL(O(x1)) = 2·x1
+1(O(x), O(y)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
+1(x, +(y, z)) → +1(x, y)
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
O(0) → 0
From the DPs we obtained the following set of size-change graphs:
LOG'(O(x)) → LOG'(x)
LOG'(I(x)) → LOG'(x)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
LOG'(O(x)) → LOG'(x)
LOG'(I(x)) → LOG'(x)
From the DPs we obtained the following set of size-change graphs: