YES
0 QTRS
↳1 QTRSRRRProof (⇔, 75 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 0 ms)
↳4 QTRS
↳5 RisEmptyProof (⇔, 0 ms)
↳6 YES
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X
[U213, plus2, nplus2] > U112
[U213, plus2, nplus2] > [tt, isNat1, nisNat1] > [s1, ns1]
[U213, plus2, nplus2] > [tt, isNat1, nisNat1] > and2
[n0, 0] > U112
[n0, 0] > [tt, isNat1, nisNat1] > [s1, ns1]
[n0, 0] > [tt, isNat1, nisNat1] > and2
U112: multiset
tt: multiset
U213: [3,2,1]
s1: multiset
plus2: [1,2]
and2: [2,1]
isNat1: multiset
n0: multiset
nplus2: [1,2]
nisNat1: multiset
ns1: multiset
0: multiset
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X
activate1 > plus2 > 0 > n0 > s1 > ns1 > nplus2 > isNat1 > nisNat1
0=1
n__0=1
isNat_1=1
n__isNat_1=1
s_1=1
n__s_1=1
activate_1=0
plus_2=0
n__plus_2=0
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X