YES
0 QTRS
↳1 QTRSToCSRProof (⇔, 0 ms)
↳2 CSR
↳3 CSRRRRProof (⇔, 51 ms)
↳4 CSR
↳5 CSRRRRProof (⇔, 0 ms)
↳6 CSR
↳7 CSRRRRProof (⇔, 0 ms)
↳8 CSR
↳9 CSRRRRProof (⇔, 0 ms)
↳10 CSR
↳11 CSRRRRProof (⇔, 0 ms)
↳12 CSR
↳13 CSRRRRProof (⇔, 3 ms)
↳14 CSR
↳15 CSRRRRProof (⇔, 0 ms)
↳16 CSR
↳17 RisEmptyProof (⇔, 0 ms)
↳18 YES
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2) → mark(U11(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2) → mark(U11(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
U11: {1}
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
The QTRS contained all rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is complete (and sound).
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
U11: {1}
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
U11: {1}
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
Used ordering:
Polynomial interpretation [POLO]:
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(U11(x1, x2)) = 1 + x1 + x2
POL(U21(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(and(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = 0
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = x1
POL(tt) = 0
U11(tt, N) → N
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
U11: {1}
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
U11: {1}
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
Used ordering:
Polynomial interpretation [POLO]:
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 1
POL(U11(x1, x2)) = 1 + x1 + x2
POL(U21(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(and(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = x1
POL(tt) = 0
plus(N, 0) → U11(isNat(N), N)
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
Used ordering:
Polynomial interpretation [POLO]:
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(U21(x1, x2, x3)) = 2 + x1 + 2·x2 + x3
POL(and(x1, x2)) = 2·x1 + x2
POL(isNat(x1)) = 0
POL(plus(x1, x2)) = x1 + 2·x2
POL(s(x1)) = 2 + x1
POL(tt) = 0
plus(N, s(M)) → U21(and(isNat(M), isNat(N)), M, N)
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
tt: empty set
U21: {1}
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
Used ordering:
Polynomial interpretation [POLO]:
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 1
POL(U21(x1, x2, x3)) = x1 + x2 + x3
POL(and(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = x1
POL(tt) = 1
U21(tt, M, N) → s(plus(N, M))
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
tt: empty set
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
tt: empty set
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
0: empty set
Used ordering:
Polynomial interpretation [POLO]:
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(and(x1, x2)) = x1
POL(isNat(x1)) = 1 + x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = x1
POL(tt) = 0
isNat(0) → tt
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
s: {1}
plus: {1, 2}
and: {1}
isNat: empty set
Used ordering:
Polynomial interpretation [POLO]:
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(and(x1, x2)) = x1
POL(isNat(x1)) = x1
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = x1
isNat(plus(V1, V2)) → and(isNat(V1), isNat(V2))
isNat(s(V1)) → isNat(V1)
s: {1}
isNat: empty set
isNat(s(V1)) → isNat(V1)
s: {1}
isNat: empty set
Used ordering:
Polynomial interpretation [POLO]:
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(isNat(x1)) = x1
POL(s(x1)) = 1 + x1
isNat(s(V1)) → isNat(V1)