YES Termination w.r.t. Q proof of Transformed_CSR_04_PALINDROME_nokinds_GM.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__and(tt, X) → mark(X)
a__isList(V) → a__isNeList(V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__and(a__isList(V1), isList(V2))
a__isNeList(V) → a__isQid(V)
a__isNeList(__(V1, V2)) → a__and(a__isList(V1), isNeList(V2))
a__isNeList(__(V1, V2)) → a__and(a__isNeList(V1), isList(V2))
a__isNePal(V) → a__isQid(V)
a__isNePal(__(I, __(P, I))) → a__and(a__isQid(I), isPal(P))
a__isPal(V) → a__isNePal(V)
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(isNeList(X)) → a__isNeList(X)
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isList(X) → isList(X)
a__isNeList(X) → isNeList(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)
a__isPal(X) → isPal(X)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Knuth-Bendix order [KBO] with precedence:
mark1 > a > nil > aand2 > and2 > u > o > i > aisNeList1 > isNeList1 > aisNePal1 > isNePal1 > aisQid1 > isQid1 > e > a2 > aisPal1 > aisList1 > isList1 > _2 > isPal1 > tt

and weight map:

nil=1
tt=3
a=2
e=2
i=2
o=2
u=2
mark_1=0
a__isList_1=3
a__isNeList_1=2
isList_1=3
a__isQid_1=1
isNeList_1=2
a__isNePal_1=2
isPal_1=9
a__isPal_1=9
isQid_1=1
isNePal_1=2
___2=4
a_____2=4
a__and_2=0
and_2=0

The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__and(tt, X) → mark(X)
a__isList(V) → a__isNeList(V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__and(a__isList(V1), isList(V2))
a__isNeList(V) → a__isQid(V)
a__isNeList(__(V1, V2)) → a__and(a__isList(V1), isNeList(V2))
a__isNeList(__(V1, V2)) → a__and(a__isNeList(V1), isList(V2))
a__isNePal(V) → a__isQid(V)
a__isNePal(__(I, __(P, I))) → a__and(a__isQid(I), isPal(P))
a__isPal(V) → a__isNePal(V)
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(isNeList(X)) → a__isNeList(X)
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isList(X) → isList(X)
a__isNeList(X) → isNeList(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)
a__isPal(X) → isPal(X)


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) YES