(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
nil → n__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
a → n__a
e → n__e
i → n__i
o → n__o
u → n__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Knuth-Bendix order [KBO] with precedence:
activate1 > u > o > i > isList1 > and2 > _2 > nisList1 > e > a > no > ni > ne > n2 > nu > na > isPal1 > nisPal1 > isNePal1 > nil > isNeList1 > nisNeList1 > isQid1 > nnil > tt
and weight map:
nil=2
tt=2
n__nil=2
n__a=1
n__e=1
n__i=1
n__o=1
n__u=2
a=1
e=1
i=1
o=1
u=2
activate_1=0
isList_1=1
isNeList_1=1
n__isList_1=1
isQid_1=1
n__isNeList_1=1
isNePal_1=1
n__isPal_1=1
isPal_1=1
___2=2
and_2=0
n_____2=2
The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
nil → n__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
a → n__a
e → n__e
i → n__i
o → n__o
u → n__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) YES