YES Termination w.r.t. Q proof of Transformed_CSR_04_PALINDROME_complete_FR.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Combined order from the following AFS and order.
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  x1
isNeList(x1)  =  isNeList(x1)
activate(x1)  =  x1
U21(x1, x2, x3)  =  U21(x1, x2, x3)
U22(x1, x2)  =  U22(x1, x2)
isList(x1)  =  isList(x1)
U23(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
isQid(x1)  =  isQid(x1)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2)  =  U52(x1, x2)
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
U62(x1)  =  x1
U71(x1, x2)  =  U71(x1, x2)
U72(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
and(x1, x2)  =  and(x1, x2)
isPalListKind(x1)  =  isPalListKind(x1)
n__nil  =  n__nil
n____(x1, x2)  =  n____(x1, x2)
n__isPalListKind(x1)  =  n__isPalListKind(x1)
n__and(x1, x2)  =  n__and(x1, x2)
n__isPal(x1)  =  n__isPal(x1)
isPal(x1)  =  isPal(x1)
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
[2, n2, nisPal1, isPal1] > [tt, nu, u] > U222 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[2, n2, nisPal1, isPal1] > [tt, nu, u] > U522 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[2, n2, nisPal1, isPal1] > U213 > U222 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[2, n2, nisPal1, isPal1] > U413 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[2, n2, nisPal1, isPal1] > U413 > U422 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[2, n2, nisPal1, isPal1] > U513 > U522 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[2, n2, nisPal1, isPal1] > [U712, isNePal1, and2, nand2] > U612 > [U312, isQid1]
[2, n2, nisPal1, isPal1] > [U712, isNePal1, and2, nand2] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[nil, nnil] > [tt, nu, u] > U222 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[nil, nnil] > [tt, nu, u] > U522 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[na, a] > [tt, nu, u] > U222 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[na, a] > [tt, nu, u] > U522 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[ne, e] > [tt, nu, u] > U222 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[ne, e] > [tt, nu, u] > U522 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[ni, i] > [tt, nu, u] > U222 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[ni, i] > [tt, nu, u] > U522 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[no, o] > [tt, nu, u] > U222 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]
[no, o] > [tt, nu, u] > U522 > isList1 > [U112, isNeList1] > [isPalListKind1, nisPalListKind1] > [U312, isQid1]

Status:
_2: [1,2]
nil: multiset
U112: [2,1]
tt: multiset
isNeList1: [1]
U213: [3,1,2]
U222: multiset
isList1: multiset
U312: [2,1]
isQid1: [1]
U413: [3,2,1]
U422: [2,1]
U513: [2,3,1]
U522: [2,1]
U612: multiset
U712: multiset
isNePal1: multiset
and2: [1,2]
isPalListKind1: [1]
nnil: multiset
n2: [1,2]
nisPalListKind1: [1]
nand2: [1,2]
nisPal1: [1]
isPal1: [1]
na: multiset
ne: multiset
ni: multiset
no: multiset
nu: multiset
a: multiset
e: multiset
i: multiset
o: multiset
u: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U31(tt, V) → U32(isQid(activate(V)))
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U61(tt, V) → U62(isQid(activate(V)))
U71(tt, V) → U72(isNePal(activate(V)))
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U12(tt) → tt
U23(tt) → tt
U32(tt) → tt
U43(tt) → tt
U53(tt) → tt
U62(tt) → tt
U72(tt) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(U12(x1)) = 1 + x1   
POL(U23(x1)) = 2·x1   
POL(U32(x1)) = 2 + 2·x1   
POL(U43(x1)) = 2 + 2·x1   
POL(U53(x1)) = 2 + 2·x1   
POL(U62(x1)) = 2 + 2·x1   
POL(U72(x1)) = 2·x1   
POL(__(x1, x2)) = 2 + 2·x1 + x2   
POL(a) = 1   
POL(activate(x1)) = 1 + 2·x1   
POL(and(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(e) = 2   
POL(i) = 2   
POL(isPal(x1)) = 2 + 2·x1   
POL(isPalListKind(x1)) = 2 + 2·x1   
POL(n____(x1, x2)) = 2 + 2·x1 + x2   
POL(n__a) = 0   
POL(n__and(x1, x2)) = 2 + 2·x1 + x2   
POL(n__e) = 1   
POL(n__i) = 2   
POL(n__isPal(x1)) = 2 + x1   
POL(n__isPalListKind(x1)) = 2 + x1   
POL(n__nil) = 2   
POL(n__o) = 1   
POL(n__u) = 2   
POL(nil) = 2   
POL(o) = 2   
POL(tt) = 1   
POL(u) = 2   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

U12(tt) → tt
U23(tt) → tt
U32(tt) → tt
U43(tt) → tt
U53(tt) → tt
U62(tt) → tt
U72(tt) → tt
an__a
en__e
on__o
activate(n__nil) → nil
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X


(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
in__i
un__u
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a

Q is empty.

(5) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Knuth-Bendix order [KBO] with precedence:
activate1 > a > nil > nu > u > ni > nisPal1 > isPal1 > nisPalListKind1 > na > and2 > i > nand2 > isPalListKind1 > _2 > nnil > n2

and weight map:

nil=2
n__nil=1
i=2
n__i=1
u=2
n__u=1
n__a=1
a=1
isPalListKind_1=2
n__isPalListKind_1=1
isPal_1=2
n__isPal_1=1
activate_1=0
___2=0
n_____2=0
and_2=1
n__and_2=0

The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
in__i
un__u
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a


(6) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(7) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(8) YES