YES Termination w.r.t. Q proof of Transformed_CSR_04_PALINDROME_complete-noand_Z.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Combined order from the following AFS and order.
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1, x2)  =  U12(x1, x2)
isPalListKind(x1)  =  x1
activate(x1)  =  x1
U13(x1)  =  x1
isNeList(x1)  =  isNeList(x1)
U21(x1, x2, x3)  =  U21(x1, x2, x3)
U22(x1, x2, x3)  =  U22(x1, x2, x3)
U23(x1, x2, x3)  =  U23(x1, x2, x3)
U24(x1, x2, x3)  =  U24(x1, x2, x3)
U25(x1, x2)  =  U25(x1, x2)
isList(x1)  =  isList(x1)
U26(x1)  =  U26(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1, x2)  =  U32(x1, x2)
U33(x1)  =  x1
isQid(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2, x3)  =  U42(x1, x2, x3)
U43(x1, x2, x3)  =  U43(x1, x2, x3)
U44(x1, x2, x3)  =  U44(x1, x2, x3)
U45(x1, x2)  =  U45(x1, x2)
U46(x1)  =  U46(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
U53(x1, x2, x3)  =  U53(x1, x2, x3)
U54(x1, x2, x3)  =  U54(x1, x2, x3)
U55(x1, x2)  =  U55(x1, x2)
U56(x1)  =  U56(x1)
U61(x1, x2)  =  U61(x1, x2)
U62(x1, x2)  =  U62(x1, x2)
U63(x1)  =  x1
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2)  =  U72(x1, x2)
U73(x1, x2)  =  U73(x1, x2)
isPal(x1)  =  isPal(x1)
U74(x1)  =  x1
U81(x1, x2)  =  U81(x1, x2)
U82(x1, x2)  =  U82(x1, x2)
U83(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
U91(x1, x2)  =  U91(x1, x2)
U92(x1)  =  U92(x1)
n__nil  =  n__nil
n____(x1, x2)  =  n____(x1, x2)
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
[2, U713, n2] > U213 > U223 > U233 > U243 > U252 > [isList1, U552] > U112 > U122 > isNeList1 > U312 > U322 > [U261, U561]
[2, U713, n2] > U213 > U223 > U233 > U243 > U252 > [isList1, U552] > [tt, na, a] > U322 > [U261, U561]
[2, U713, n2] > U213 > U223 > U233 > U243 > U252 > [isList1, U552] > [tt, na, a] > U461 > [U261, U561]
[2, U713, n2] > U213 > U223 > U233 > U243 > U252 > [isList1, U552] > [tt, na, a] > isNePal1 > U612 > U622 > [U261, U561]
[2, U713, n2] > U413 > U423 > U433 > U443 > [isList1, U552] > U112 > U122 > isNeList1 > U312 > U322 > [U261, U561]
[2, U713, n2] > U413 > U423 > U433 > U443 > [isList1, U552] > [tt, na, a] > U322 > [U261, U561]
[2, U713, n2] > U413 > U423 > U433 > U443 > [isList1, U552] > [tt, na, a] > U461 > [U261, U561]
[2, U713, n2] > U413 > U423 > U433 > U443 > [isList1, U552] > [tt, na, a] > isNePal1 > U612 > U622 > [U261, U561]
[2, U713, n2] > U413 > U423 > U433 > U443 > U452 > isNeList1 > U312 > U322 > [U261, U561]
[2, U713, n2] > U413 > U423 > U433 > U443 > U452 > U461 > [U261, U561]
[2, U713, n2] > U513 > U523 > U533 > U543 > [isList1, U552] > U112 > U122 > isNeList1 > U312 > U322 > [U261, U561]
[2, U713, n2] > U513 > U523 > U533 > U543 > [isList1, U552] > [tt, na, a] > U322 > [U261, U561]
[2, U713, n2] > U513 > U523 > U533 > U543 > [isList1, U552] > [tt, na, a] > U461 > [U261, U561]
[2, U713, n2] > U513 > U523 > U533 > U543 > [isList1, U552] > [tt, na, a] > isNePal1 > U612 > U622 > [U261, U561]
[2, U713, n2] > U722 > U732 > [U261, U561]
[2, U713, n2] > U722 > isPal1 > [tt, na, a] > U322 > [U261, U561]
[2, U713, n2] > U722 > isPal1 > [tt, na, a] > U461 > [U261, U561]
[2, U713, n2] > U722 > isPal1 > [tt, na, a] > isNePal1 > U612 > U622 > [U261, U561]
[2, U713, n2] > U722 > isPal1 > U812 > U822 > isNePal1 > U612 > U622 > [U261, U561]
[2, U713, n2] > U912 > U921 > [tt, na, a] > U322 > [U261, U561]
[2, U713, n2] > U912 > U921 > [tt, na, a] > U461 > [U261, U561]
[2, U713, n2] > U912 > U921 > [tt, na, a] > isNePal1 > U612 > U622 > [U261, U561]
[nil, nnil] > [tt, na, a] > U322 > [U261, U561]
[nil, nnil] > [tt, na, a] > U461 > [U261, U561]
[nil, nnil] > [tt, na, a] > isNePal1 > U612 > U622 > [U261, U561]
[ne, e] > [tt, na, a] > U322 > [U261, U561]
[ne, e] > [tt, na, a] > U461 > [U261, U561]
[ne, e] > [tt, na, a] > isNePal1 > U612 > U622 > [U261, U561]
[ni, i] > [tt, na, a] > U322 > [U261, U561]
[ni, i] > [tt, na, a] > U461 > [U261, U561]
[ni, i] > [tt, na, a] > isNePal1 > U612 > U622 > [U261, U561]
[no, o] > [tt, na, a] > U322 > [U261, U561]
[no, o] > [tt, na, a] > U461 > [U261, U561]
[no, o] > [tt, na, a] > isNePal1 > U612 > U622 > [U261, U561]
[nu, u] > [tt, na, a] > U322 > [U261, U561]
[nu, u] > [tt, na, a] > U461 > [U261, U561]
[nu, u] > [tt, na, a] > isNePal1 > U612 > U622 > [U261, U561]

Status:
_2: [1,2]
nil: multiset
U112: [2,1]
tt: multiset
U122: [2,1]
isNeList1: multiset
U213: [3,1,2]
U223: [3,1,2]
U233: [3,2,1]
U243: [1,2,3]
U252: multiset
isList1: multiset
U261: [1]
U312: [2,1]
U322: [2,1]
U413: multiset
U423: [2,1,3]
U433: [2,1,3]
U443: multiset
U452: multiset
U461: multiset
U513: [3,1,2]
U523: [3,2,1]
U533: [2,3,1]
U543: multiset
U552: multiset
U561: [1]
U612: [1,2]
U622: [1,2]
U713: [1,2,3]
U722: [1,2]
U732: [1,2]
isPal1: [1]
U812: [1,2]
U822: multiset
isNePal1: [1]
U912: multiset
U921: multiset
nnil: multiset
n2: [1,2]
na: multiset
ne: multiset
ni: multiset
no: multiset
nu: multiset
a: multiset
e: multiset
i: multiset
o: multiset
u: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U13(tt) → tt
U33(tt) → tt
U63(tt) → tt
U74(tt) → tt
U83(tt) → tt
isPalListKind(n__a) → tt
isQid(n__a) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Knuth-Bendix order [KBO] with precedence:
U831 > activate1 > nu > u > no > U131 > o > ni > i > ne > e > a > na > n2 > _2 > nnil > U331 > nil > isQid1 > isPalListKind1 > U741 > U631 > tt

and weight map:

tt=2
n__a=1
nil=2
n__nil=1
a=2
e=2
n__e=1
i=2
n__i=1
o=2
n__o=1
u=2
n__u=1
U13_1=1
U33_1=1
U63_1=1
U74_1=1
U83_1=0
isPalListKind_1=1
isQid_1=1
activate_1=1
___2=1
n_____2=0

The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

U13(tt) → tt
U33(tt) → tt
U63(tt) → tt
U74(tt) → tt
U83(tt) → tt
isPalListKind(n__a) → tt
isQid(n__a) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X


(4) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(5) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(6) YES