YES Termination w.r.t. Q proof of Transformed_CSR_04_MYNAT_complete_GM.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Combined order from the following AFS and order.
a__U11(x1, x2, x3)  =  a__U11(x1, x2, x3)
tt  =  tt
a__U12(x1, x2)  =  a__U12(x1, x2)
a__isNat(x1)  =  a__isNat(x1)
a__U13(x1)  =  a__U13(x1)
a__U21(x1, x2)  =  a__U21(x1, x2)
a__U22(x1)  =  x1
a__U31(x1, x2, x3)  =  a__U31(x1, x2, x3)
a__U32(x1, x2)  =  a__U32(x1, x2)
a__U33(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x1, x2)
mark(x1)  =  x1
a__U51(x1, x2, x3)  =  a__U51(x1, x2, x3)
s(x1)  =  s(x1)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U61(x1)  =  x1
0  =  0
a__U71(x1, x2, x3)  =  a__U71(x1, x2, x3)
a__x(x1, x2)  =  a__x(x1, x2)
a__and(x1, x2)  =  a__and(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
a__isNatKind(x1)  =  a__isNatKind(x1)
isNatKind(x1)  =  isNatKind(x1)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U12(x1, x2)  =  U12(x1, x2)
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1, x2, x3)
U32(x1, x2)  =  U32(x1, x2)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U61(x1)  =  x1
U71(x1, x2, x3)  =  U71(x1, x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
[aU713, ax2, x2, U713] > [aU313, U313] > [aU322, U322] > [tt, aisNat1, isNat1] > 0
[aU713, ax2, x2, U713] > [aU513, aplus2, plus2, U513] > [aU113, U113] > [aU122, U122] > [aU131, U131] > [tt, aisNat1, isNat1] > 0
[aU713, ax2, x2, U713] > [aU513, aplus2, plus2, U513] > [aU412, U412]
[aU713, ax2, x2, U713] > [aU513, aplus2, plus2, U513] > s1 > [aU212, U212] > [tt, aisNat1, isNat1] > 0
[aU713, ax2, x2, U713] > [aU513, aplus2, plus2, U513] > s1 > [aisNatKind1, isNatKind1] > [tt, aisNat1, isNat1] > 0
[aU713, ax2, x2, U713] > [aU513, aplus2, plus2, U513] > s1 > [aisNatKind1, isNatKind1] > [aand2, and2]

Status:
aU113: [1,2,3]
tt: multiset
aU122: [2,1]
aisNat1: [1]
aU131: [1]
aU212: multiset
aU313: multiset
aU322: multiset
aU412: multiset
aU513: [2,3,1]
s1: [1]
aplus2: [2,1]
0: multiset
aU713: [2,3,1]
ax2: [2,1]
aand2: multiset
plus2: [2,1]
aisNatKind1: multiset
isNatKind1: multiset
x2: [2,1]
and2: multiset
isNat1: [1]
U113: [1,2,3]
U122: [2,1]
U131: [1]
U212: multiset
U313: multiset
U322: multiset
U412: multiset
U513: [2,3,1]
U713: [2,3,1]

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U22(tt) → tt
a__U33(tt) → tt
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 2   
POL(U11(x1, x2, x3)) = 2 + x1 + x2 + x3   
POL(U12(x1, x2)) = 1 + x1 + x2   
POL(U13(x1)) = 2 + x1   
POL(U21(x1, x2)) = 1 + x1 + x2   
POL(U22(x1)) = 1 + x1   
POL(U31(x1, x2, x3)) = 2 + x1 + x2 + x3   
POL(U32(x1, x2)) = 1 + x1 + x2   
POL(U33(x1)) = 1 + 2·x1   
POL(U41(x1, x2)) = 1 + x1 + x2   
POL(U51(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U61(x1)) = 1 + x1   
POL(U71(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(a__U11(x1, x2, x3)) = 2 + x1 + x2 + 2·x3   
POL(a__U12(x1, x2)) = 2 + x1 + x2   
POL(a__U13(x1)) = 2 + x1   
POL(a__U21(x1, x2)) = 2 + x1 + 2·x2   
POL(a__U22(x1)) = 2 + x1   
POL(a__U31(x1, x2, x3)) = 2 + x1 + x2 + 2·x3   
POL(a__U32(x1, x2)) = 2 + x1 + x2   
POL(a__U33(x1)) = 2 + 2·x1   
POL(a__U41(x1, x2)) = 2 + x1 + 2·x2   
POL(a__U51(x1, x2, x3)) = 2 + x1 + x2 + 2·x3   
POL(a__U61(x1)) = 2 + x1   
POL(a__U71(x1, x2, x3)) = 2 + x1 + x2 + x3   
POL(a__and(x1, x2)) = 2 + x1 + 2·x2   
POL(a__isNat(x1)) = 2 + 2·x1   
POL(a__isNatKind(x1)) = 2 + x1   
POL(a__plus(x1, x2)) = 2 + x1 + x2   
POL(a__x(x1, x2)) = 2 + x1 + 2·x2   
POL(and(x1, x2)) = 1 + x1 + x2   
POL(isNat(x1)) = 1 + x1   
POL(isNatKind(x1)) = 1 + x1   
POL(mark(x1)) = 2·x1   
POL(plus(x1, x2)) = 1 + x1 + x2   
POL(s(x1)) = 1 + x1   
POL(tt) = 1   
POL(x(x1, x2)) = 1 + x1 + 2·x2   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__U22(tt) → tt
a__U33(tt) → tt
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U13(X)) → a__U13(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)


(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U13(X) → U13(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)

Q is empty.

(5) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(U11(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U12(x1, x2)) = 2·x1 + x2   
POL(U13(x1)) = x1   
POL(U21(x1, x2)) = 2·x1 + x2   
POL(U22(x1)) = 2·x1   
POL(U31(x1, x2, x3)) = x1 + x2 + x3   
POL(U32(x1, x2)) = 2·x1 + x2   
POL(U33(x1)) = 2·x1   
POL(U41(x1, x2)) = 2·x1 + x2   
POL(U51(x1, x2, x3)) = 2·x1 + x2 + x3   
POL(U61(x1)) = 2·x1   
POL(U71(x1, x2, x3)) = 2·x1 + x2 + x3   
POL(a__U11(x1, x2, x3)) = 2 + 2·x1 + 2·x2 + 2·x3   
POL(a__U12(x1, x2)) = x1 + x2   
POL(a__U13(x1)) = 2 + 2·x1   
POL(a__U21(x1, x2)) = x1 + x2   
POL(a__U22(x1)) = x1   
POL(a__U31(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3   
POL(a__U32(x1, x2)) = x1 + x2   
POL(a__U33(x1)) = x1   
POL(a__U41(x1, x2)) = x1 + x2   
POL(a__U51(x1, x2, x3)) = x1 + x2 + x3   
POL(a__U61(x1)) = x1   
POL(a__U71(x1, x2, x3)) = x1 + x2 + x3   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isNat(x1)) = x1   
POL(a__isNatKind(x1)) = x1   
POL(a__plus(x1, x2)) = x1 + x2   
POL(a__x(x1, x2)) = x1 + 2·x2   
POL(and(x1, x2)) = 2·x1 + x2   
POL(isNat(x1)) = x1   
POL(isNatKind(x1)) = x1   
POL(mark(x1)) = 2·x1   
POL(plus(x1, x2)) = 2·x1 + 2·x2   
POL(x(x1, x2)) = 2·x1 + 2·x2   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U13(X) → U13(X)


(6) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)

Q is empty.

(7) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(U12(x1, x2)) = 2·x1 + x2   
POL(U21(x1, x2)) = 2·x1 + x2   
POL(U22(x1)) = 2·x1   
POL(U31(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U32(x1, x2)) = 2·x1 + x2   
POL(U33(x1)) = 2·x1   
POL(U41(x1, x2)) = 2·x1 + x2   
POL(U51(x1, x2, x3)) = 2·x1 + x2 + x3   
POL(U61(x1)) = 2·x1   
POL(U71(x1, x2, x3)) = 2·x1 + x2 + x3   
POL(a__U12(x1, x2)) = x1 + x2   
POL(a__U21(x1, x2)) = 2·x1 + x2   
POL(a__U22(x1)) = x1   
POL(a__U31(x1, x2, x3)) = 2 + 2·x1 + 2·x2 + 2·x3   
POL(a__U32(x1, x2)) = x1 + x2   
POL(a__U33(x1)) = 2·x1   
POL(a__U41(x1, x2)) = x1 + x2   
POL(a__U51(x1, x2, x3)) = 2·x1 + x2 + x3   
POL(a__U61(x1)) = x1   
POL(a__U71(x1, x2, x3)) = x1 + x2 + x3   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isNat(x1)) = x1   
POL(a__isNatKind(x1)) = x1   
POL(a__plus(x1, x2)) = x1 + 2·x2   
POL(a__x(x1, x2)) = x1 + x2   
POL(and(x1, x2)) = 2·x1 + x2   
POL(isNat(x1)) = x1   
POL(isNatKind(x1)) = x1   
POL(mark(x1)) = 2·x1   
POL(plus(x1, x2)) = 2·x1 + 2·x2   
POL(x(x1, x2)) = 2·x1 + 2·x2   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__U31(X1, X2, X3) → U31(X1, X2, X3)


(8) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)

Q is empty.

(9) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Knuth-Bendix order [KBO] with precedence:
aU412 > aU331 > mark1 > aplus2 > U322 > U611 > aisNatKind1 > U122 > isNatKind1 > x2 > plus2 > aU513 > aU221 > aU322 > aU122 > isNat1 > aU212 > and2 > aU611 > U713 > aU713 > U412 > U331 > ax2 > aisNat1 > U513 > aand2 > U221 > U212

and weight map:

mark_1=4
isNat_1=1
a__isNat_1=5
U22_1=2
a__U22_1=1
U33_1=2
a__U33_1=1
U61_1=2
a__U61_1=1
isNatKind_1=1
a__isNatKind_1=5
U12_2=1
a__U12_2=0
U21_2=1
a__U21_2=0
U32_2=1
a__U32_2=0
U41_2=1
a__U41_2=0
U51_3=1
a__U51_3=0
plus_2=4
a__plus_2=0
U71_3=1
a__U71_3=0
x_2=4
a__x_2=0
and_2=4
a__and_2=0

The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)


(10) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(11) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(12) YES