(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(U11(x1, x2)) = 1 + x1 + 2·x2
POL(active(x1)) = x1
POL(and(x1, x2)) = 2·x1 + x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 1 + 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(mark(x1)) = x1
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(length(nil)) → mark(0)
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(U11(tt, L)) → S(length(L))
ACTIVE(U11(tt, L)) → LENGTH(L)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(isNat(s(V1))) → ISNAT(V1)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
ACTIVE(isNatIList(cons(V1, V2))) → AND(isNat(V1), isNatIList(V2))
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
ACTIVE(isNatIList(cons(V1, V2))) → ISNATILIST(V2)
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
ACTIVE(isNatList(cons(V1, V2))) → AND(isNat(V1), isNatList(V2))
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
ACTIVE(isNatList(cons(V1, V2))) → ISNATLIST(V2)
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
ACTIVE(length(cons(N, L))) → U111(and(isNatList(L), isNat(N)), L)
ACTIVE(length(cons(N, L))) → AND(isNatList(L), isNat(N))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ACTIVE(length(cons(N, L))) → ISNAT(N)
MARK(zeros) → ACTIVE(zeros)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(0) → ACTIVE(0)
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
MARK(U11(X1, X2)) → U111(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(nil) → ACTIVE(nil)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(X1, mark(X2)) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
ISNATLIST(mark(X)) → ISNATLIST(X)
ISNATLIST(active(X)) → ISNATLIST(X)
ISNATILIST(mark(X)) → ISNATILIST(X)
ISNATILIST(active(X)) → ISNATILIST(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 23 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(active(X)) → ISNATILIST(X)
ISNATILIST(mark(X)) → ISNATILIST(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(active(X)) → ISNATILIST(X)
ISNATILIST(mark(X)) → ISNATILIST(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ISNATILIST(active(X)) → ISNATILIST(X)
The graph contains the following edges 1 > 1
- ISNATILIST(mark(X)) → ISNATILIST(X)
The graph contains the following edges 1 > 1
(11) YES
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(active(X)) → ISNATLIST(X)
ISNATLIST(mark(X)) → ISNATLIST(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(active(X)) → ISNATLIST(X)
ISNATLIST(mark(X)) → ISNATLIST(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ISNATLIST(active(X)) → ISNATLIST(X)
The graph contains the following edges 1 > 1
- ISNATLIST(mark(X)) → ISNATLIST(X)
The graph contains the following edges 1 > 1
(16) YES
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ISNAT(active(X)) → ISNAT(X)
The graph contains the following edges 1 > 1
- ISNAT(mark(X)) → ISNAT(X)
The graph contains the following edges 1 > 1
(21) YES
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- AND(X1, mark(X2)) → AND(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- AND(mark(X1), X2) → AND(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- AND(active(X1), X2) → AND(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- AND(X1, active(X2)) → AND(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(26) YES
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(active(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(active(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(30) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LENGTH(active(X)) → LENGTH(X)
The graph contains the following edges 1 > 1
- LENGTH(mark(X)) → LENGTH(X)
The graph contains the following edges 1 > 1
(31) YES
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- S(active(X)) → S(X)
The graph contains the following edges 1 > 1
- S(mark(X)) → S(X)
The graph contains the following edges 1 > 1
(36) YES
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U111(X1, mark(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(38) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U111(X1, mark(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(40) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- U111(X1, mark(X2)) → U111(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- U111(mark(X1), X2) → U111(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- U111(active(X1), X2) → U111(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- U111(X1, active(X2)) → U111(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(41) YES
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(43) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(45) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- CONS(X1, mark(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- CONS(mark(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(active(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(X1, active(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(46) YES
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(and(tt, X)) → MARK(X)
MARK(U11(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(48) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
MARK(U11(X1, X2)) → MARK(X1)
MARK(length(X)) → MARK(X)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 1 + x1 + 2·x2
POL(active(x1)) = x1
POL(and(x1, x2)) = 2·x1 + x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(mark(x1)) = x1
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(and(tt, X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(50) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = 2x1 + 2 |
POL( U11(x1, x2) ) = x1 + 2 |
POL( and(x1, x2) ) = 2x1 + x2 |
POL( cons(x1, x2) ) = 2x1 + 1 |
POL( isNatIList(x1) ) = 2 |
POL( MARK(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
mark(zeros) → active(zeros)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
active(and(tt, X)) → mark(X)
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
mark(length(X)) → active(length(mark(X)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(isNat(X)) → active(isNat(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(0) → active(0)
mark(tt) → active(tt)
mark(nil) → active(nil)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
active(isNat(0)) → mark(tt)
(51) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(and(tt, X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(52) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( and(x1, x2) ) = x1 + 2x2 |
POL( isNatIList(x1) ) = 0 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
mark(zeros) → active(zeros)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
active(and(tt, X)) → mark(X)
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
mark(length(X)) → active(length(mark(X)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(isNat(X)) → active(isNat(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(0) → active(0)
mark(tt) → active(tt)
mark(nil) → active(nil)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
active(isNat(0)) → mark(tt)
(53) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(and(tt, X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(54) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(
x1) =
MARK
cons(
x1,
x2) =
cons
ACTIVE(
x1) =
x1
mark(
x1) =
mark(
x1)
U11(
x1,
x2) =
U11
tt =
tt
s(
x1) =
s
length(
x1) =
length
and(
x1,
x2) =
and
isNat(
x1) =
isNat
isNatIList(
x1) =
isNatIList
isNatList(
x1) =
isNatList
active(
x1) =
active(
x1)
zeros =
zeros
0 =
0
nil =
nil
Recursive path order with status [RPO].
Quasi-Precedence:
active1 > [MARK, U11, length, and, isNat, isNatIList, isNatList] > mark1 > [cons, zeros] > 0 > s
active1 > [MARK, U11, length, and, isNat, isNatIList, isNatList] > mark1 > tt > s
active1 > [MARK, U11, length, and, isNat, isNatIList, isNatList] > mark1 > nil > s
Status:
MARK: multiset
cons: multiset
mark1: multiset
U11: multiset
tt: multiset
s: multiset
length: multiset
and: multiset
isNat: multiset
isNatIList: multiset
isNatList: multiset
active1: [1]
zeros: multiset
0: multiset
nil: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(56) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(and(tt, X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVE(x1)) = | 5A | + | 0A | · | x1 |
POL(U11(x1, x2)) = | 3A | + | -I | · | x1 | + | 2A | · | x2 |
POL(MARK(x1)) = | 4A | + | 2A | · | x1 |
POL(length(x1)) = | 3A | + | 0A | · | x1 |
POL(mark(x1)) = | 5A | + | 0A | · | x1 |
POL(and(x1, x2)) = | 3A | + | 0A | · | x1 | + | 3A | · | x2 |
POL(isNat(x1)) = | 3A | + | -I | · | x1 |
POL(isNatIList(x1)) = | 3A | + | 5A | · | x1 |
POL(cons(x1, x2)) = | 3A | + | 0A | · | x1 | + | 5A | · | x2 |
POL(isNatList(x1)) = | 3A | + | 5A | · | x1 |
POL(active(x1)) = | 5A | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
mark(zeros) → active(zeros)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
active(and(tt, X)) → mark(X)
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
mark(length(X)) → active(length(mark(X)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(isNat(X)) → active(isNat(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(0) → active(0)
mark(tt) → active(tt)
mark(nil) → active(nil)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
active(isNat(0)) → mark(tt)
(57) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(58) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( length(x1) ) = max{0, -2} |
POL( active(x1) ) = x1 + 1 |
POL( mark(x1) ) = 2x1 + 2 |
POL( U11(x1, x2) ) = max{0, -1} |
POL( cons(x1, x2) ) = max{0, x1 - 1} |
POL( isNatIList(x1) ) = 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
(59) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(60) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = max{0, x1 - 2} |
POL( MARK(x1) ) = max{0, -1} |
POL( cons(x1, x2) ) = x1 + 2 |
POL( isNatIList(x1) ) = x1 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(62) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(
x1) =
x1
U11(
x1,
x2) =
U11
tt =
tt
MARK(
x1) =
MARK
s(
x1) =
s
length(
x1) =
length
mark(
x1) =
mark
isNat(
x1) =
isNat
and(
x1,
x2) =
and
isNatList(
x1) =
isNatList
cons(
x1,
x2) =
cons(
x1,
x2)
active(
x1) =
active
zeros =
zeros
0 =
0
isNatIList(
x1) =
x1
nil =
nil
Recursive path order with status [RPO].
Quasi-Precedence:
mark > tt > [U11, MARK, length, isNat, isNatList] > [s, and, active, zeros, 0, nil]
mark > cons2 > [U11, MARK, length, isNat, isNatList] > [s, and, active, zeros, 0, nil]
Status:
U11: multiset
tt: multiset
MARK: multiset
s: multiset
length: multiset
mark: multiset
isNat: multiset
and: []
isNatList: multiset
cons2: multiset
active: multiset
zeros: multiset
0: multiset
nil: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(64) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = 2x1 + 1 |
POL( MARK(x1) ) = 2x1 + 1 |
POL( active(x1) ) = x1 + 1 |
POL( cons(x1, x2) ) = max{0, 2x1 + x2 - 1} |
POL( isNatIList(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(66) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(
x1) =
x1
U11(
x1,
x2) =
U11
tt =
tt
MARK(
x1) =
MARK
s(
x1) =
s(
x1)
length(
x1) =
length
mark(
x1) =
mark
isNat(
x1) =
isNat
and(
x1,
x2) =
and(
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
isNatList(
x1) =
isNatList
active(
x1) =
active
zeros =
zeros
0 =
0
isNatIList(
x1) =
x1
nil =
nil
Recursive path order with status [RPO].
Quasi-Precedence:
[tt, s1, mark, and1, active] > cons2 > [U11, MARK, length, isNat] > isNatList
[tt, s1, mark, and1, active] > zeros > isNatList
[tt, s1, mark, and1, active] > 0 > isNatList
[tt, s1, mark, and1, active] > nil > isNatList
Status:
U11: []
tt: multiset
MARK: []
s1: multiset
length: []
mark: multiset
isNat: []
and1: multiset
cons2: multiset
isNatList: multiset
active: multiset
zeros: multiset
0: multiset
nil: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(68) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(and(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( cons(x1, x2) ) = x1 + x2 + 2 |
POL( and(x1, x2) ) = 2x1 + 2x2 + 2 |
POL( isNatIList(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
(69) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(70) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = max{0, 2x1 - 2} |
POL( MARK(x1) ) = max{0, 2x1 - 2} |
POL( and(x1, x2) ) = max{0, x1 - 2} |
POL( isNat(x1) ) = x1 + 2 |
POL( isNatIList(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
(71) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(72) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(isNat(X)) → ACTIVE(isNat(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(
x1) =
x1
U11(
x1,
x2) =
U11
tt =
tt
MARK(
x1) =
MARK
s(
x1) =
x1
length(
x1) =
length
mark(
x1) =
mark
isNat(
x1) =
isNat
cons(
x1,
x2) =
cons(
x2)
and(
x1,
x2) =
and(
x2)
isNatList(
x1) =
isNatList(
x1)
active(
x1) =
active
zeros =
zeros
0 =
0
isNatIList(
x1) =
x1
nil =
nil
Recursive path order with status [RPO].
Quasi-Precedence:
[U11, MARK, length] > [mark, isNat, cons1, isNatList1, active, zeros, 0, nil]
tt > [mark, isNat, cons1, isNatList1, active, zeros, 0, nil]
and1 > [mark, isNat, cons1, isNatList1, active, zeros, 0, nil]
Status:
U11: multiset
tt: multiset
MARK: multiset
length: multiset
mark: multiset
isNat: multiset
cons1: multiset
and1: multiset
isNatList1: [1]
active: []
zeros: multiset
0: multiset
nil: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
(73) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(74) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
MARK(
U11(
X1,
X2)) →
ACTIVE(
U11(
mark(
X1),
X2)) at position [0] we obtained the following new rules [LPAR04]:
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1)) → MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1)) → MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1)) → MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1)) → MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1)) → MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1)) → MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1)) → MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1)) → MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1)) → MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1)) → MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1)) → MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1)) → MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1)) → MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1)) → MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1)) → MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
(75) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(76) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
MARK(
length(
X)) →
ACTIVE(
length(
mark(
X))) at position [0] we obtained the following new rules [LPAR04]:
MARK(length(x0)) → ACTIVE(length(x0)) → MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros))) → MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1)))) → MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(0)) → ACTIVE(length(active(0))) → MARK(length(0)) → ACTIVE(length(active(0)))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1)))) → MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(tt)) → ACTIVE(length(active(tt))) → MARK(length(tt)) → ACTIVE(length(active(tt)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0))))) → MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0))))) → MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1)))) → MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0)))) → MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0)))) → MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0)))) → MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(length(nil)) → ACTIVE(length(active(nil))) → MARK(length(nil)) → ACTIVE(length(active(nil)))
(77) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(s(X)) → MARK(X)
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(0)) → ACTIVE(length(active(0)))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(tt)) → ACTIVE(length(active(tt)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(length(nil)) → ACTIVE(length(active(nil)))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(78) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
MARK(
length(
0)) →
ACTIVE(
length(
active(
0))) at position [0] we obtained the following new rules [LPAR04]:
MARK(length(0)) → ACTIVE(length(0)) → MARK(length(0)) → ACTIVE(length(0))
(79) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(s(X)) → MARK(X)
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(tt)) → ACTIVE(length(active(tt)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(length(nil)) → ACTIVE(length(active(nil)))
MARK(length(0)) → ACTIVE(length(0))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(80) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(81) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(tt)) → ACTIVE(length(active(tt)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(length(nil)) → ACTIVE(length(active(nil)))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(82) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
MARK(
length(
tt)) →
ACTIVE(
length(
active(
tt))) at position [0] we obtained the following new rules [LPAR04]:
MARK(length(tt)) → ACTIVE(length(tt)) → MARK(length(tt)) → ACTIVE(length(tt))
(83) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(length(nil)) → ACTIVE(length(active(nil)))
MARK(length(tt)) → ACTIVE(length(tt))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(84) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(85) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(length(nil)) → ACTIVE(length(active(nil)))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(86) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
MARK(
length(
nil)) →
ACTIVE(
length(
active(
nil))) at position [0] we obtained the following new rules [LPAR04]:
MARK(length(nil)) → ACTIVE(length(nil)) → MARK(length(nil)) → ACTIVE(length(nil))
(87) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
MARK(length(nil)) → ACTIVE(length(nil))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(88) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(89) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(90) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(U11(U11(x0, x1), y1)) → ACTIVE(U11(active(U11(mark(x0), x1)), y1))
MARK(U11(length(x0), y1)) → ACTIVE(U11(active(length(mark(x0))), y1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = x1 + 1 |
POL( U11(x1, x2) ) = x1 + 1 |
POL( isNatIList(x1) ) = 0 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
mark(zeros) → active(zeros)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
active(and(tt, X)) → mark(X)
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
mark(length(X)) → active(length(mark(X)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(isNat(X)) → active(isNat(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(0) → active(0)
mark(tt) → active(tt)
mark(nil) → active(nil)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
active(isNat(0)) → mark(tt)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
(91) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(92) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(U11(s(x0), y1)) → ACTIVE(U11(active(s(mark(x0))), y1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( MARK(x1) ) = max{0, 2x1 - 2} |
POL( U11(x1, x2) ) = 2x1 + 1 |
POL( active(x1) ) = 2x1 + 1 |
POL( isNatIList(x1) ) = 0 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
(93) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(94) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(U11(zeros, y1)) → ACTIVE(U11(active(zeros), y1))
MARK(U11(cons(x0, x1), y1)) → ACTIVE(U11(active(cons(mark(x0), x1)), y1))
MARK(U11(0, y1)) → ACTIVE(U11(active(0), y1))
MARK(U11(tt, y1)) → ACTIVE(U11(active(tt), y1))
MARK(U11(isNatList(x0), y1)) → ACTIVE(U11(active(isNatList(x0)), y1))
MARK(U11(isNatIList(x0), y1)) → ACTIVE(U11(active(isNatIList(x0)), y1))
MARK(U11(nil, y1)) → ACTIVE(U11(active(nil), y1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( mark(x1) ) = 2x1 + 2 |
POL( cons(x1, x2) ) = x2 + 1 |
POL( isNatIList(x1) ) = 1 |
POL( isNatList(x1) ) = x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
(95) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(96) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(U11(isNat(x0), y1)) → ACTIVE(U11(active(isNat(x0)), y1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( mark(x1) ) = 2x1 + 1 |
POL( isNatIList(x1) ) = 0 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
(97) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(98) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(length(isNat(x0))) → ACTIVE(length(active(isNat(x0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 3A | + | 0A | · | x1 |
POL(U11(x1, x2)) = | 5A | + | 3A | · | x1 | + | 2A | · | x2 |
POL(ACTIVE(x1)) = | 2A | + | 0A | · | x1 |
POL(length(x1)) = | 0A | + | 2A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | 5A | + | -I | · | x1 | + | 0A | · | x2 |
POL(and(x1, x2)) = | 4A | + | -I | · | x1 | + | 0A | · | x2 |
POL(isNatList(x1)) = | 3A | + | 0A | · | x1 |
POL(isNat(x1)) = | 0A | + | -I | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
POL(isNatIList(x1)) = | 5A | + | -I | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
mark(zeros) → active(zeros)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
active(and(tt, X)) → mark(X)
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
mark(length(X)) → active(length(mark(X)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(isNat(X)) → active(isNat(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(0) → active(0)
mark(tt) → active(tt)
mark(nil) → active(nil)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
active(isNat(0)) → mark(tt)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
(99) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(100) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(length(isNatIList(x0))) → ACTIVE(length(active(isNatIList(x0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 1A | + | 0A | · | x1 |
POL(U11(x1, x2)) = | -I | + | 1A | · | x1 | + | 0A | · | x2 |
POL(ACTIVE(x1)) = | 0A | + | 0A | · | x1 |
POL(length(x1)) = | -I | + | 0A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | 1A | + | -I | · | x1 | + | 0A | · | x2 |
POL(and(x1, x2)) = | 0A | + | -I | · | x1 | + | 0A | · | x2 |
POL(isNatList(x1)) = | 3A | + | 4A | · | x1 |
POL(isNat(x1)) = | 0A | + | -I | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
POL(isNatIList(x1)) = | 0A | + | -I | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
mark(zeros) → active(zeros)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
active(and(tt, X)) → mark(X)
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
mark(length(X)) → active(length(mark(X)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(isNat(X)) → active(isNat(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(0) → active(0)
mark(tt) → active(tt)
mark(nil) → active(nil)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
active(isNat(0)) → mark(tt)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
(101) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(102) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(length(isNatList(x0))) → ACTIVE(length(active(isNatList(x0))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 4A | + | 1A | · | x1 |
POL(U11(x1, x2)) = | 3A | + | 1A | · | x1 | + | 0A | · | x2 |
POL(ACTIVE(x1)) = | 1A | + | 1A | · | x1 |
POL(length(x1)) = | 2A | + | 0A | · | x1 |
POL(mark(x1)) = | 1A | + | 0A | · | x1 |
POL(cons(x1, x2)) = | 3A | + | 2A | · | x1 | + | 0A | · | x2 |
POL(and(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(isNatList(x1)) = | 2A | + | -I | · | x1 |
POL(isNat(x1)) = | -I | + | 0A | · | x1 |
POL(active(x1)) = | 1A | + | 0A | · | x1 |
POL(isNatIList(x1)) = | 0A | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
mark(zeros) → active(zeros)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
active(and(tt, X)) → mark(X)
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
mark(length(X)) → active(length(mark(X)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(isNat(X)) → active(isNat(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(0) → active(0)
mark(tt) → active(tt)
mark(nil) → active(nil)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
active(isNat(0)) → mark(tt)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
(103) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(104) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(U11(y0, mark(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(U11(y0, active(x1))) → ACTIVE(U11(mark(y0), x1))
MARK(length(U11(x0, x1))) → ACTIVE(length(active(U11(mark(x0), x1))))
MARK(length(length(x0))) → ACTIVE(length(active(length(mark(x0)))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 5A | + | 1A | · | x1 |
POL(U11(x1, x2)) = | 3A | + | 1A | · | x1 | + | 3A | · | x2 |
POL(ACTIVE(x1)) = | 5A | + | 0A | · | x1 |
POL(length(x1)) = | 4A | + | 2A | · | x1 |
POL(mark(x1)) = | 2A | + | 0A | · | x1 |
POL(cons(x1, x2)) = | 2A | + | 0A | · | x1 | + | 2A | · | x2 |
POL(and(x1, x2)) = | 2A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(isNatList(x1)) = | 3A | + | 2A | · | x1 |
POL(isNat(x1)) = | 3A | + | 0A | · | x1 |
POL(active(x1)) = | 2A | + | 0A | · | x1 |
POL(isNatIList(x1)) = | 5A | + | 3A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
mark(zeros) → active(zeros)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
active(and(tt, X)) → mark(X)
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
mark(length(X)) → active(length(mark(X)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(isNat(X)) → active(isNat(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(0) → active(0)
mark(tt) → active(tt)
mark(nil) → active(nil)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
active(isNat(0)) → mark(tt)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
(105) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(106) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(length(cons(x0, x1))) → ACTIVE(length(active(cons(mark(x0), x1))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 4A | + | 1A | · | x1 |
POL(U11(x1, x2)) = | 4A | + | 0A | · | x1 | + | 1A | · | x2 |
POL(ACTIVE(x1)) = | 5A | + | 0A | · | x1 |
POL(length(x1)) = | 4A | + | 0A | · | x1 |
POL(cons(x1, x2)) = | 5A | + | 0A | · | x1 | + | 5A | · | x2 |
POL(and(x1, x2)) = | -I | + | 0A | · | x1 | + | 4A | · | x2 |
POL(isNatList(x1)) = | 1A | + | -I | · | x1 |
POL(isNat(x1)) = | 0A | + | -I | · | x1 |
POL(active(x1)) = | 5A | + | 0A | · | x1 |
POL(mark(x1)) = | 5A | + | 0A | · | x1 |
POL(isNatIList(x1)) = | 2A | + | 1A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
mark(zeros) → active(zeros)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
active(and(tt, X)) → mark(X)
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
mark(length(X)) → active(length(mark(X)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(isNat(X)) → active(isNat(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(0) → active(0)
mark(tt) → active(tt)
mark(nil) → active(nil)
active(isNat(0)) → mark(tt)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
(107) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(108) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(length(and(x0, x1))) → ACTIVE(length(active(and(mark(x0), x1))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 3A | + | 1A | · | x1 |
POL(U11(x1, x2)) = | 0A | + | -I | · | x1 | + | 1A | · | x2 |
POL(ACTIVE(x1)) = | 3A | + | 0A | · | x1 |
POL(length(x1)) = | 1A | + | 0A | · | x1 |
POL(cons(x1, x2)) = | 0A | + | 0A | · | x1 | + | 2A | · | x2 |
POL(and(x1, x2)) = | 3A | + | -I | · | x1 | + | 1A | · | x2 |
POL(isNatList(x1)) = | 2A | + | 5A | · | x1 |
POL(isNat(x1)) = | 0A | + | -I | · | x1 |
POL(active(x1)) = | 3A | + | 0A | · | x1 |
POL(mark(x1)) = | 3A | + | 1A | · | x1 |
POL(isNatIList(x1)) = | 1A | + | 4A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
mark(zeros) → active(zeros)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
active(and(tt, X)) → mark(X)
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
mark(length(X)) → active(length(mark(X)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(isNat(X)) → active(isNat(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(0) → active(0)
mark(tt) → active(tt)
mark(nil) → active(nil)
active(isNat(0)) → mark(tt)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
(109) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(x0)) → ACTIVE(length(x0))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(110) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(U11(x0, x1)) → ACTIVE(U11(x0, x1))
MARK(length(x0)) → ACTIVE(length(x0))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 5A | + | 2A | · | x1 |
POL(U11(x1, x2)) = | -I | + | 0A | · | x1 | + | 2A | · | x2 |
POL(ACTIVE(x1)) = | 4A | + | 0A | · | x1 |
POL(length(x1)) = | 3A | + | 0A | · | x1 |
POL(cons(x1, x2)) = | 5A | + | 0A | · | x1 | + | 4A | · | x2 |
POL(and(x1, x2)) = | 3A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(isNatList(x1)) = | 0A | + | -I | · | x1 |
POL(isNat(x1)) = | 0A | + | -I | · | x1 |
POL(active(x1)) = | 5A | + | 0A | · | x1 |
POL(mark(x1)) = | 5A | + | 0A | · | x1 |
POL(isNatIList(x1)) = | 0A | + | 5A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
mark(zeros) → active(zeros)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
active(and(tt, X)) → mark(X)
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
mark(length(X)) → active(length(mark(X)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(isNat(X)) → active(isNat(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(0) → active(0)
mark(tt) → active(tt)
mark(nil) → active(nil)
active(isNat(0)) → mark(tt)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
(111) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(112) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(length(s(x0))) → ACTIVE(length(active(s(mark(x0)))))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = max{0, x1 - 1} |
POL( length(x1) ) = x1 + 1 |
POL( and(x1, x2) ) = 2x1 + x2 |
POL( isNatIList(x1) ) = 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
mark(zeros) → active(zeros)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
active(and(tt, X)) → mark(X)
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
mark(length(X)) → active(length(mark(X)))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
mark(isNat(X)) → active(isNat(X))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(0) → active(0)
mark(tt) → active(tt)
mark(nil) → active(nil)
active(isNat(0)) → mark(tt)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
(113) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(114) NonMonReductionPairProof (EQUIVALENT transformation)
Using the following max-polynomial ordering, we can orient the general usable rules and all rules from P weakly and some rules from P strictly:
Polynomial interpretation with max [POLO,NEGPOLO,MAXPOLO]:
POL(0) = 1
POL(ACTIVE(x1)) = 1 + x1
POL(MARK(x1)) = 1 + x1
POL(U11(x1, x2)) = max(0, 1 - x1)
POL(active(x1)) = x1
POL(and(x1, x2)) = max(0, x1 + x2)
POL(cons(x1, x2)) = max(0, 0)
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 1
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 1
POL(s(x1)) = 1 + x1
POL(tt) = 0
POL(zeros) = 0
The following pairs can be oriented strictly and are deleted.
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
The following rules are usable:
active(zeros) ↔ mark(cons(0, zeros))
active(U11(tt, L)) ↔ mark(s(length(L)))
active(and(tt, X)) ↔ mark(X)
active(isNat(0)) ↔ mark(tt)
active(isNat(s(V1))) ↔ mark(isNat(V1))
active(isNatIList(cons(V1, V2))) ↔ mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) ↔ mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) ↔ mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) ↔ active(zeros)
mark(cons(X1, X2)) ↔ active(cons(mark(X1), X2))
mark(0) ↔ active(0)
mark(U11(X1, X2)) ↔ active(U11(mark(X1), X2))
mark(tt) ↔ active(tt)
mark(s(X)) ↔ active(s(mark(X)))
mark(length(X)) ↔ active(length(mark(X)))
mark(and(X1, X2)) ↔ active(and(mark(X1), X2))
mark(isNat(X)) ↔ active(isNat(X))
mark(isNatList(X)) ↔ active(isNatList(X))
mark(isNatIList(X)) ↔ active(isNatIList(X))
mark(nil) ↔ active(nil)
cons(mark(X1), X2) ↔ cons(X1, X2)
cons(X1, mark(X2)) ↔ cons(X1, X2)
cons(active(X1), X2) ↔ cons(X1, X2)
cons(X1, active(X2)) ↔ cons(X1, X2)
U11(mark(X1), X2) ↔ U11(X1, X2)
U11(X1, mark(X2)) ↔ U11(X1, X2)
U11(active(X1), X2) ↔ U11(X1, X2)
U11(X1, active(X2)) ↔ U11(X1, X2)
s(mark(X)) ↔ s(X)
s(active(X)) ↔ s(X)
length(mark(X)) ↔ length(X)
length(active(X)) ↔ length(X)
and(mark(X1), X2) ↔ and(X1, X2)
and(X1, mark(X2)) ↔ and(X1, X2)
and(active(X1), X2) ↔ and(X1, X2)
and(X1, active(X2)) ↔ and(X1, X2)
isNat(mark(X)) ↔ isNat(X)
isNat(active(X)) ↔ isNat(X)
isNatList(mark(X)) ↔ isNatList(X)
isNatList(active(X)) ↔ isNatList(X)
isNatIList(mark(X)) ↔ isNatIList(X)
isNatIList(active(X)) ↔ isNatIList(X)
(115) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(116) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(length(zeros)) → ACTIVE(length(active(zeros)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = x1 + 2 |
POL( MARK(x1) ) = 2x1 + 2 |
POL( s(x1) ) = max{0, -2} |
POL( active(x1) ) = 2x1 + 1 |
POL( mark(x1) ) = 2x1 + 1 |
POL( and(x1, x2) ) = max{0, x1 + x2 - 1} |
POL( cons(x1, x2) ) = 2x2 + 1 |
POL( isNatIList(x1) ) = x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U11(X1, mark(X2)) → U11(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
(117) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(118) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(U11(and(x0, x1), y1)) → ACTIVE(U11(active(and(mark(x0), x1)), y1))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(
x1) =
ACTIVE
MARK(
x1) =
x1
s(
x1) =
s
U11(
x1,
x2) =
U11
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
s=1
ACTIVE=2
U11=3
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(active(X)) → s(X)
s(mark(X)) → s(X)
(119) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(120) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(121) YES