(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(U11(x1, x2)) = 1 + x1 + x2
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + 2·x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = 2·x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
isNat(n__length(V1)) → isNatList(activate(V1))
isNatList(n__nil) → tt
length(nil) → 0
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(U11(x1, x2)) = 1 + x1 + 2·x2
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 2 + 2·x1
POL(isNatList(x1)) = 2·x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + 2·x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = 2 + 2·x1
POL(n__isNatList(x1)) = 2·x1
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 2
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ZEROS → CONS(0, n__zeros)
ZEROS → 01
U111(tt, L) → S(length(activate(L)))
U111(tt, L) → LENGTH(activate(L))
U111(tt, L) → ACTIVATE(L)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__zeros) → ZEROS
ACTIVATE(n__0) → 01
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ACTIVATE(n__length(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__isNat(X)) → ISNAT(X)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 8 less nodes.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__length(X)) → LENGTH(activate(X))
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U111(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__length(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
U111(tt, L) → ACTIVATE(L)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
ACTIVATE(n__length(X)) → ACTIVATE(X)
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
U111(tt, L) → ACTIVATE(L)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = 1 + x1
POL(AND(x1, x2)) = 1 + x1 + x2
POL(ISNAT(x1)) = 1 + x1
POL(ISNATILIST(x1)) = 2 + x1
POL(ISNATLIST(x1)) = 1 + x1
POL(LENGTH(x1)) = 2 + 2·x1
POL(U11(x1, x2)) = 1 + x1 + 2·x2
POL(U111(x1, x2)) = 2 + 2·x1 + 2·x2
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = 2·x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__isNat(x1)) = 2·x1
POL(n__isNatIList(x1)) = 1 + x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__length(X)) → LENGTH(activate(X))
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U111(tt, L) → LENGTH(activate(L))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(12) Complex Obligation (AND)
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U111(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(14) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( LENGTH(x1) ) = 2x1 + 2 |
POL( U111(x1, x2) ) = x1 + 2x2 + 1 |
POL( s(x1) ) = max{0, -1} |
POL( n__cons(x1, x2) ) = x2 |
POL( n__isNatIList(x1) ) = 2 |
POL( isNatIList(x1) ) = 2 |
POL( and(x1, x2) ) = max{0, 2x1 + x2 - 2} |
POL( n__isNatList(x1) ) = max{0, -2} |
POL( isNatList(x1) ) = max{0, -2} |
POL( U11(x1, x2) ) = max{0, x1 - 2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
and(tt, X) → activate(X)
activate(n__isNatList(X)) → isNatList(X)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
activate(n__nil) → nil
activate(n__isNat(X)) → isNat(X)
activate(X) → X
isNatList(X) → n__isNatList(X)
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
isNat(n__0) → tt
isNat(X) → n__isNat(X)
isNat(n__s(V1)) → isNat(activate(V1))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
0 → n__0
nil → n__nil
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U111(tt, L) → LENGTH(activate(L))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(17) TRUE
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__isNat(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( AND(x1, x2) ) = max{0, 2x1 + 2x2 - 2} |
POL( ISNAT(x1) ) = 2x1 + 2 |
POL( n__isNatIList(x1) ) = x1 |
POL( n__isNatList(x1) ) = x1 |
POL( length(x1) ) = max{0, -2} |
POL( n__cons(x1, x2) ) = x1 + x2 |
POL( cons(x1, x2) ) = x1 + x2 |
POL( isNatIList(x1) ) = x1 |
POL( and(x1, x2) ) = max{0, x1 + x2 - 2} |
POL( isNat(x1) ) = x1 + 2 |
POL( isNatList(x1) ) = x1 |
POL( n__isNat(x1) ) = x1 + 2 |
POL( U11(x1, x2) ) = max{0, -2} |
POL( ACTIVATE(x1) ) = 2x1 + 2 |
POL( ISNATILIST(x1) ) = 2x1 + 2 |
POL( ISNATLIST(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
and(tt, X) → activate(X)
activate(n__isNatList(X)) → isNatList(X)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
activate(n__nil) → nil
activate(n__isNat(X)) → isNat(X)
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNat(X) → n__isNat(X)
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
isNatList(X) → n__isNatList(X)
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
0 → n__0
nil → n__nil
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( AND(x1, x2) ) = 2x2 + 2 |
POL( ISNAT(x1) ) = max{0, 2x1 - 2} |
POL( n__isNatIList(x1) ) = 0 |
POL( n__isNatList(x1) ) = x1 |
POL( n__length(x1) ) = 2x1 |
POL( n__cons(x1, x2) ) = 2x1 + 2x2 |
POL( cons(x1, x2) ) = 2x1 + 2x2 |
POL( isNatIList(x1) ) = 0 |
POL( and(x1, x2) ) = max{0, x1 + x2 - 1} |
POL( isNatList(x1) ) = x1 |
POL( U11(x1, x2) ) = 2x1 + 2x2 |
POL( ACTIVATE(x1) ) = 2x1 + 2 |
POL( ISNATILIST(x1) ) = 2 |
POL( ISNATLIST(x1) ) = x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
and(tt, X) → activate(X)
activate(n__isNatList(X)) → isNatList(X)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
activate(n__nil) → nil
activate(n__isNat(X)) → isNat(X)
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNat(X) → n__isNat(X)
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
isNatList(X) → n__isNatList(X)
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
0 → n__0
nil → n__nil
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( AND(x1, x2) ) = 2x1 + x2 |
POL( n__isNatIList(x1) ) = 0 |
POL( n__isNatList(x1) ) = max{0, 2x1 - 1} |
POL( activate(x1) ) = x1 + 2 |
POL( n__length(x1) ) = x1 + 2 |
POL( length(x1) ) = x1 + 2 |
POL( n__cons(x1, x2) ) = x1 + 2x2 + 2 |
POL( cons(x1, x2) ) = x1 + 2x2 + 2 |
POL( isNatIList(x1) ) = 2 |
POL( and(x1, x2) ) = x2 + 2 |
POL( isNatList(x1) ) = 2x1 + 1 |
POL( ACTIVATE(x1) ) = x1 + 2 |
POL( ISNATILIST(x1) ) = 2 |
POL( ISNATLIST(x1) ) = 2x1 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
and(tt, X) → activate(X)
activate(n__isNatList(X)) → isNatList(X)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
activate(n__nil) → nil
activate(n__isNat(X)) → isNat(X)
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNat(X) → n__isNat(X)
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
isNatList(X) → n__isNatList(X)
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
0 → n__0
nil → n__nil
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(27) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
V1,
V2)) →
AND(
isNat(
activate(
V1)),
n__isNatIList(
activate(
V2))) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(y0, y1)) → AND(n__isNat(activate(y0)), n__isNatIList(activate(y1))) → ISNATILIST(n__cons(y0, y1)) → AND(n__isNat(activate(y0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1))) → ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1))) → ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1))) → ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1))) → ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1))) → ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1))) → ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1))) → ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1))) → ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1))) → ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1))) → ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ISNATILIST(n__cons(y0, y1)) → AND(n__isNat(activate(y0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(29) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
V1,
V2)) →
AND(
isNat(
activate(
V1)),
n__isNatList(
activate(
V2))) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(y0, y1)) → AND(n__isNat(activate(y0)), n__isNatList(activate(y1))) → ISNATLIST(n__cons(y0, y1)) → AND(n__isNat(activate(y0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1))) → ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1))) → ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1))) → ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1))) → ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1))) → ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1))) → ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1))) → ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1))) → ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1))) → ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1))) → ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(y0, y1)) → AND(n__isNat(activate(y0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
AND(
tt,
X) →
ACTIVATE(
X) we obtained the following new rules [LPAR04]:
AND(tt, n__isNatIList(y_3)) → ACTIVATE(n__isNatIList(y_3)) → AND(tt, n__isNatIList(y_3)) → ACTIVATE(n__isNatIList(y_3))
AND(tt, n__isNatList(y_3)) → ACTIVATE(n__isNatList(y_3)) → AND(tt, n__isNatList(y_3)) → ACTIVATE(n__isNatList(y_3))
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
AND(tt, n__isNatIList(y_3)) → ACTIVATE(n__isNatIList(y_3))
AND(tt, n__isNatList(y_3)) → ACTIVATE(n__isNatList(y_3))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(37) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(38) Complex Obligation (AND)
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
AND(tt, n__isNatList(y_3)) → ACTIVATE(n__isNatList(y_3))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(40) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = 1 + 2·x1
POL(AND(x1, x2)) = 1 + x1 + 2·x2
POL(ISNATLIST(x1)) = 1 + 2·x1
POL(U11(x1, x2)) = 2 + 2·x1 + 2·x2
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + 2·x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = 2 + 2·x1
POL(n__nil) = 1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
AND(tt, n__isNatList(y_3)) → ACTIVATE(n__isNatList(y_3))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(42) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = 1 + 2·x1
POL(AND(x1, x2)) = 1 + x1 + 2·x2
POL(ISNATLIST(x1)) = 1 + 2·x1
POL(U11(x1, x2)) = 2·x1 + 2·x2
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = 2·x1
POL(isNatIList(x1)) = 2 + 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__isNat(x1)) = 2·x1
POL(n__isNatIList(x1)) = 2 + 2·x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = 2·x1
POL(n__nil) = 2
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
AND(tt, n__isNatList(y_3)) → ACTIVATE(n__isNatList(y_3))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(44) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( AND(x1, x2) ) = max{0, x1 + x2 - 1} |
POL( n__isNatList(x1) ) = 2x1 + 1 |
POL( cons(x1, x2) ) = x1 + x2 |
POL( n__cons(x1, x2) ) = x1 + x2 |
POL( n__isNatIList(x1) ) = 2x1 + 2 |
POL( isNatIList(x1) ) = 2x1 + 2 |
POL( isNatList(x1) ) = 2x1 + 1 |
POL( ISNATLIST(x1) ) = 2x1 |
POL( ACTIVATE(x1) ) = max{0, x1 - 1} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
zeros → cons(0, n__zeros)
zeros → n__zeros
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
and(tt, X) → activate(X)
activate(n__isNatList(X)) → isNatList(X)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
activate(n__nil) → nil
activate(n__isNat(X)) → isNat(X)
activate(X) → X
0 → n__0
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
length(X) → n__length(X)
isNatIList(X) → n__isNatIList(X)
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U11(tt, L) → s(length(activate(L)))
nil → n__nil
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AND(tt, n__isNatList(y_3)) → ACTIVATE(n__isNatList(y_3))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(46) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( AND(x1, x2) ) = x2 + 2 |
POL( n__isNatList(x1) ) = 2x1 |
POL( activate(x1) ) = x1 + 2 |
POL( s(x1) ) = max{0, -2} |
POL( n__cons(x1, x2) ) = x1 + 2x2 + 2 |
POL( cons(x1, x2) ) = x1 + 2x2 + 2 |
POL( n__isNatIList(x1) ) = 0 |
POL( isNatIList(x1) ) = 2 |
POL( and(x1, x2) ) = x2 + 2 |
POL( isNatList(x1) ) = 2x1 + 2 |
POL( U11(x1, x2) ) = max{0, x1 - 2} |
POL( ACTIVATE(x1) ) = x1 + 2 |
POL( ISNATLIST(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
0 → n__0
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
and(tt, X) → activate(X)
activate(n__isNatList(X)) → isNatList(X)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
activate(n__nil) → nil
activate(n__isNat(X)) → isNat(X)
activate(X) → X
cons(X1, X2) → n__cons(X1, X2)
length(X) → n__length(X)
s(X) → n__s(X)
isNatIList(X) → n__isNatIList(X)
isNatList(X) → n__isNatList(X)
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AND(tt, n__isNatList(y_3)) → ACTIVATE(n__isNatList(y_3))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(48) NonTerminationLoopProof (COMPLETE transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
ACTIVATE(
n__isNatList(
activate(
n__zeros))) evaluates to t =
ACTIVATE(
n__isNatList(
activate(
n__zeros)))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceACTIVATE(n__isNatList(activate(n__zeros))) →
ACTIVATE(
n__isNatList(
zeros))
with rule
activate(
n__zeros) →
zeros at position [0,0] and matcher [ ]
ACTIVATE(n__isNatList(zeros)) →
ACTIVATE(
n__isNatList(
cons(
0,
n__zeros)))
with rule
zeros →
cons(
0,
n__zeros) at position [0,0] and matcher [ ]
ACTIVATE(n__isNatList(cons(0, n__zeros))) →
ACTIVATE(
n__isNatList(
cons(
n__0,
n__zeros)))
with rule
0 →
n__0 at position [0,0,0] and matcher [ ]
ACTIVATE(n__isNatList(cons(n__0, n__zeros))) →
ACTIVATE(
n__isNatList(
n__cons(
n__0,
n__zeros)))
with rule
cons(
X1,
X2) →
n__cons(
X1,
X2) at position [0,0] and matcher [
X1 /
n__0,
X2 /
n__zeros]
ACTIVATE(n__isNatList(n__cons(n__0, n__zeros))) →
ISNATLIST(
n__cons(
n__0,
n__zeros))
with rule
ACTIVATE(
n__isNatList(
X)) →
ISNATLIST(
X) at position [] and matcher [
X /
n__cons(
n__0,
n__zeros)]
ISNATLIST(n__cons(n__0, n__zeros)) →
AND(
isNat(
n__0),
n__isNatList(
activate(
n__zeros)))
with rule
ISNATLIST(
n__cons(
x0,
y1)) →
AND(
isNat(
x0),
n__isNatList(
activate(
y1))) at position [] and matcher [
x0 /
n__0,
y1 /
n__zeros]
AND(isNat(n__0), n__isNatList(activate(n__zeros))) →
AND(
tt,
n__isNatList(
activate(
n__zeros)))
with rule
isNat(
n__0) →
tt at position [0] and matcher [ ]
AND(tt, n__isNatList(activate(n__zeros))) →
ACTIVATE(
n__isNatList(
activate(
n__zeros)))
with rule
AND(
tt,
n__isNatList(
y_3)) →
ACTIVATE(
n__isNatList(
y_3))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(49) NO
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
AND(tt, n__isNatIList(y_3)) → ACTIVATE(n__isNatIList(y_3))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(51) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = 2·x1
POL(AND(x1, x2)) = x1 + 2·x2
POL(ISNATILIST(x1)) = 2 + 2·x1
POL(U11(x1, x2)) = x1 + x2
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = 2·x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__isNat(x1)) = 2·x1
POL(n__isNatIList(x1)) = 1 + x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = x1
POL(n__nil) = 2
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
AND(tt, n__isNatIList(y_3)) → ACTIVATE(n__isNatIList(y_3))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(53) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = 2·x1 + x2
POL(ISNATILIST(x1)) = 2 + 2·x1
POL(U11(x1, x2)) = 1 + x1 + x2
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 2 + 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = 2 + 2·x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 2
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
AND(tt, n__isNatIList(y_3)) → ACTIVATE(n__isNatIList(y_3))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(55) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( AND(x1, x2) ) = max{0, x1 + x2 - 1} |
POL( n__isNatIList(x1) ) = x1 + 1 |
POL( cons(x1, x2) ) = x1 + x2 + 1 |
POL( activate(x1) ) = x1 + 1 |
POL( n__length(x1) ) = x1 + 1 |
POL( length(x1) ) = x1 + 1 |
POL( n__cons(x1, x2) ) = x1 + x2 + 1 |
POL( isNatIList(x1) ) = x1 + 2 |
POL( and(x1, x2) ) = max{0, x1 + x2 - 1} |
POL( n__isNatList(x1) ) = x1 + 1 |
POL( isNatList(x1) ) = x1 + 2 |
POL( U11(x1, x2) ) = max{0, -2} |
POL( ISNATILIST(x1) ) = x1 + 2 |
POL( ACTIVATE(x1) ) = x1 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
zeros → cons(0, n__zeros)
zeros → n__zeros
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
and(tt, X) → activate(X)
activate(n__isNatList(X)) → isNatList(X)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
activate(n__nil) → nil
activate(n__isNat(X)) → isNat(X)
activate(X) → X
0 → n__0
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
length(X) → n__length(X)
isNatIList(X) → n__isNatIList(X)
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U11(tt, L) → s(length(activate(L)))
nil → n__nil
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AND(tt, n__isNatIList(y_3)) → ACTIVATE(n__isNatIList(y_3))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(57) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( AND(x1, x2) ) = max{0, x1 + x2 - 1} |
POL( n__isNatIList(x1) ) = 2x1 + 1 |
POL( n__length(x1) ) = x1 + 2 |
POL( length(x1) ) = x1 + 2 |
POL( n__cons(x1, x2) ) = x1 + x2 |
POL( cons(x1, x2) ) = x1 + x2 |
POL( isNatIList(x1) ) = 2x1 + 1 |
POL( and(x1, x2) ) = max{0, x1 + x2 - 1} |
POL( n__isNatList(x1) ) = 2 |
POL( ISNATILIST(x1) ) = 2x1 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
0 → n__0
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
and(tt, X) → activate(X)
activate(n__isNatList(X)) → isNatList(X)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
activate(n__nil) → nil
activate(n__isNat(X)) → isNat(X)
activate(X) → X
s(X) → n__s(X)
length(X) → n__length(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
isNatList(X) → n__isNatList(X)
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
(58) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AND(tt, n__isNatIList(y_3)) → ACTIVATE(n__isNatIList(y_3))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.