(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, V1) → A__U12(a__isNatList(V1))
A__U11(tt, V1) → A__ISNATLIST(V1)
A__U21(tt, V1) → A__U22(a__isNat(V1))
A__U21(tt, V1) → A__ISNAT(V1)
A__U31(tt, V) → A__U32(a__isNatList(V))
A__U31(tt, V) → A__ISNATLIST(V)
A__U41(tt, V1, V2) → A__U42(a__isNat(V1), V2)
A__U41(tt, V1, V2) → A__ISNAT(V1)
A__U42(tt, V2) → A__U43(a__isNatIList(V2))
A__U42(tt, V2) → A__ISNATILIST(V2)
A__U51(tt, V1, V2) → A__U52(a__isNat(V1), V2)
A__U51(tt, V1, V2) → A__ISNAT(V1)
A__U52(tt, V2) → A__U53(a__isNatList(V2))
A__U52(tt, V2) → A__ISNATLIST(V2)
A__U61(tt, L) → A__LENGTH(mark(L))
A__U61(tt, L) → MARK(L)
A__AND(tt, X) → MARK(X)
A__ISNAT(length(V1)) → A__U11(a__isNatIListKind(V1), V1)
A__ISNAT(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNATILIST(V) → A__U31(a__isNatIListKind(V), V)
A__ISNATILIST(V) → A__ISNATILISTKIND(V)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
A__ISNATILIST(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__ISNATILIST(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATILISTKIND(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATLIST(cons(V1, V2)) → A__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__ISNATLIST(cons(V1, V2)) → A__ISNATKIND(V1)
A__LENGTH(cons(N, L)) → A__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
A__LENGTH(cons(N, L)) → A__AND(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
A__LENGTH(cons(N, L)) → A__AND(a__isNatList(L), isNatIListKind(L))
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
MARK(zeros) → A__ZEROS
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → A__U12(mark(X))
MARK(U12(X)) → MARK(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → A__U22(mark(X))
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → A__U32(mark(X))
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → A__U42(mark(X1), X2)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → A__U43(mark(X))
MARK(U43(X)) → MARK(X)
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → A__U53(mark(X))
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → A__U61(mark(X1), X2)
MARK(U61(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → A__ISNATILISTKIND(X)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 11 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, V1) → A__ISNATLIST(V1)
A__ISNATLIST(cons(V1, V2)) → A__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
A__U51(tt, V1, V2) → A__U52(a__isNat(V1), V2)
A__U52(tt, V2) → A__ISNATLIST(V2)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATLIST(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNATILISTKIND(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(length(V1)) → A__U11(a__isNatIListKind(V1), V1)
A__ISNAT(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
A__U31(tt, V) → A__ISNATLIST(V)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
A__U41(tt, V1, V2) → A__U42(a__isNat(V1), V2)
A__U42(tt, V2) → A__ISNATILIST(V2)
A__ISNATILIST(V) → A__U31(a__isNatIListKind(V), V)
A__ISNATILIST(V) → A__ISNATILISTKIND(V)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
A__U41(tt, V1, V2) → A__ISNAT(V1)
A__ISNATILIST(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__ISNATILIST(cons(V1, V2)) → A__ISNATKIND(V1)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → A__U42(mark(X1), X2)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
A__U51(tt, V1, V2) → A__ISNAT(V1)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → A__U61(mark(X1), X2)
A__U61(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
A__U61(tt, L) → MARK(L)
MARK(U61(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
A__LENGTH(cons(N, L)) → A__AND(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
A__LENGTH(cons(N, L)) → A__AND(a__isNatList(L), isNatIListKind(L))
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → A__ISNATILISTKIND(X)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
A__U31(tt, V) → A__ISNATLIST(V)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
A__ISNATILIST(V) → A__ISNATILISTKIND(V)
A__U41(tt, V1, V2) → A__ISNAT(V1)
A__ISNATILIST(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__ISNATILIST(cons(V1, V2)) → A__ISNATKIND(V1)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = 2x2 |
POL( A__LENGTH(x1) ) = x1 |
POL( A__U11(x1, x2) ) = max{0, -2} |
POL( A__U21(x1, x2) ) = max{0, -1} |
POL( A__U31(x1, x2) ) = x2 + 2 |
POL( A__U41(x1, ..., x3) ) = 2x2 + 2x3 + 2 |
POL( A__U42(x1, x2) ) = 2x2 + 2 |
POL( A__U51(x1, ..., x3) ) = 0 |
POL( A__U52(x1, x2) ) = max{0, -2} |
POL( A__U61(x1, x2) ) = 2x2 |
POL( a__isNatKind(x1) ) = 0 |
POL( and(x1, x2) ) = x1 + x2 |
POL( a__and(x1, x2) ) = x1 + 2x2 |
POL( isNatIListKind(x1) ) = 0 |
POL( a__isNatIListKind(x1) ) = 0 |
POL( cons(x1, x2) ) = x1 + 2x2 |
POL( a__U11(x1, x2) ) = x1 |
POL( a__U21(x1, x2) ) = x1 |
POL( a__isNatList(x1) ) = 0 |
POL( U31(x1, x2) ) = x1 + x2 + 1 |
POL( a__U31(x1, x2) ) = x1 + x2 + 1 |
POL( a__U32(x1) ) = x1 + 1 |
POL( U41(x1, ..., x3) ) = x1 + 2x2 + 2x3 + 1 |
POL( a__U41(x1, ..., x3) ) = x1 + 2x2 + 2x3 + 1 |
POL( U42(x1, x2) ) = x1 + 2x2 + 1 |
POL( a__U42(x1, x2) ) = x1 + 2x2 + 1 |
POL( isNatIList(x1) ) = 2x1 + 1 |
POL( a__isNatIList(x1) ) = 2x1 + 1 |
POL( U51(x1, ..., x3) ) = x1 |
POL( a__U51(x1, ..., x3) ) = x1 |
POL( a__U52(x1, x2) ) = 2x1 |
POL( U61(x1, x2) ) = x1 + 2x2 |
POL( a__U61(x1, x2) ) = x1 + 2x2 |
POL( a__length(x1) ) = x1 |
POL( A__ISNATLIST(x1) ) = 0 |
POL( A__ISNATKIND(x1) ) = 0 |
POL( A__ISNATILISTKIND(x1) ) = 0 |
POL( A__ISNATILIST(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
a__isNatKind(0) → tt
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__and(tt, X) → mark(X)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
mark(isNatKind(X)) → a__isNatKind(X)
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(X) → isNatKind(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(X) → isNat(X)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatList(X) → isNatList(X)
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(X1, X2) → U52(X1, X2)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U21(X1, X2) → U21(X1, X2)
a__U22(tt) → tt
a__U22(X) → U22(X)
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U31(X1, X2) → U31(X1, X2)
a__U32(tt) → tt
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__U31(tt, V) → a__U32(a__isNatList(V))
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(nil) → 0
a__length(X) → length(X)
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
a__U61(tt, L) → s(a__length(mark(L)))
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__zeros → cons(0, zeros)
a__zeros → zeros
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, V1) → A__ISNATLIST(V1)
A__ISNATLIST(cons(V1, V2)) → A__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
A__U51(tt, V1, V2) → A__U52(a__isNat(V1), V2)
A__U52(tt, V2) → A__ISNATLIST(V2)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATLIST(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNATILISTKIND(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(length(V1)) → A__U11(a__isNatIListKind(V1), V1)
A__ISNAT(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
A__U41(tt, V1, V2) → A__U42(a__isNat(V1), V2)
A__U42(tt, V2) → A__ISNATILIST(V2)
A__ISNATILIST(V) → A__U31(a__isNatIListKind(V), V)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
MARK(U42(X1, X2)) → A__U42(mark(X1), X2)
MARK(U43(X)) → MARK(X)
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
A__U51(tt, V1, V2) → A__ISNAT(V1)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → A__U61(mark(X1), X2)
A__U61(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
A__U61(tt, L) → MARK(L)
MARK(U61(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
A__LENGTH(cons(N, L)) → A__AND(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
A__LENGTH(cons(N, L)) → A__AND(a__isNatList(L), isNatIListKind(L))
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → A__ISNATILISTKIND(X)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 5 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U42(tt, V2) → A__ISNATILIST(V2)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
A__U41(tt, V1, V2) → A__U42(a__isNat(V1), V2)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- A__ISNATILIST(cons(V1, V2)) → A__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
The graph contains the following edges 1 > 2, 1 > 3
- A__U41(tt, V1, V2) → A__U42(a__isNat(V1), V2)
The graph contains the following edges 3 >= 2
- A__U42(tt, V2) → A__ISNATILIST(V2)
The graph contains the following edges 2 >= 1
(11) YES
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__ISNATLIST(cons(V1, V2)) → A__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
A__U51(tt, V1, V2) → A__U52(a__isNat(V1), V2)
A__U52(tt, V2) → A__ISNATLIST(V2)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
A__U11(tt, V1) → A__ISNATLIST(V1)
A__ISNATLIST(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNATILISTKIND(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(length(V1)) → A__U11(a__isNatIListKind(V1), V1)
A__ISNAT(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
A__U51(tt, V1, V2) → A__ISNAT(V1)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → A__U61(mark(X1), X2)
A__U61(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
A__U61(tt, L) → MARK(L)
MARK(U61(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
A__LENGTH(cons(N, L)) → A__AND(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
A__LENGTH(cons(N, L)) → A__AND(a__isNatList(L), isNatIListKind(L))
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → A__ISNATILISTKIND(X)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
A__U11(tt, V1) → A__ISNATLIST(V1)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
A__ISNAT(length(V1)) → A__U11(a__isNatIListKind(V1), V1)
A__ISNAT(length(V1)) → A__ISNATILISTKIND(V1)
A__U61(tt, L) → MARK(L)
MARK(U61(X1, X2)) → MARK(X1)
A__LENGTH(cons(N, L)) → A__AND(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
A__LENGTH(cons(N, L)) → A__AND(a__isNatList(L), isNatIListKind(L))
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
MARK(length(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = x2 |
POL( A__LENGTH(x1) ) = x1 + 2 |
POL( A__U11(x1, x2) ) = x2 + 2 |
POL( A__U21(x1, x2) ) = 2x2 |
POL( A__U51(x1, ..., x3) ) = 2x2 + x3 |
POL( A__U52(x1, x2) ) = x1 + x2 |
POL( A__U61(x1, x2) ) = x2 + 2 |
POL( a__isNatKind(x1) ) = 0 |
POL( and(x1, x2) ) = x1 + x2 |
POL( a__and(x1, x2) ) = x1 + x2 |
POL( isNatIListKind(x1) ) = 0 |
POL( a__isNatIListKind(x1) ) = 0 |
POL( cons(x1, x2) ) = 2x1 + 2x2 |
POL( length(x1) ) = 2x1 + 2 |
POL( a__isNat(x1) ) = 2x1 |
POL( a__U11(x1, x2) ) = x1 + x2 + 2 |
POL( a__U21(x1, x2) ) = 2x1 + 2x2 |
POL( U11(x1, x2) ) = x1 + x2 + 2 |
POL( a__U12(x1) ) = x1 + 2 |
POL( isNatList(x1) ) = x1 |
POL( a__isNatList(x1) ) = x1 |
POL( U21(x1, x2) ) = 2x1 + 2x2 |
POL( a__U31(x1, x2) ) = max{0, -1} |
POL( a__U32(x1) ) = max{0, -2} |
POL( U41(x1, ..., x3) ) = 2x3 + 2 |
POL( a__U41(x1, ..., x3) ) = 2x3 + 2 |
POL( U42(x1, x2) ) = 2x2 + 2 |
POL( a__U42(x1, x2) ) = 2x2 + 2 |
POL( isNatIList(x1) ) = x1 + 2 |
POL( a__isNatIList(x1) ) = x1 + 2 |
POL( U51(x1, ..., x3) ) = x1 + 2x2 + 2x3 |
POL( a__U51(x1, ..., x3) ) = x1 + 2x2 + 2x3 |
POL( U52(x1, x2) ) = x1 + x2 |
POL( a__U52(x1, x2) ) = x1 + x2 |
POL( U61(x1, x2) ) = 2x1 + 2x2 + 2 |
POL( a__U61(x1, x2) ) = 2x1 + 2x2 + 2 |
POL( a__length(x1) ) = 2x1 + 2 |
POL( A__ISNATLIST(x1) ) = x1 |
POL( A__ISNATKIND(x1) ) = 0 |
POL( A__ISNATILISTKIND(x1) ) = 0 |
POL( A__ISNAT(x1) ) = 2x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
a__isNatKind(0) → tt
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__and(tt, X) → mark(X)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
mark(isNatKind(X)) → a__isNatKind(X)
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(X) → isNatKind(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(X) → isNat(X)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatList(X) → isNatList(X)
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(X1, X2) → U52(X1, X2)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U21(X1, X2) → U21(X1, X2)
a__U22(tt) → tt
a__U22(X) → U22(X)
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U31(X1, X2) → U31(X1, X2)
a__U32(tt) → tt
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__U31(tt, V) → a__U32(a__isNatList(V))
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(nil) → 0
a__length(X) → length(X)
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
a__U61(tt, L) → s(a__length(mark(L)))
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__zeros → cons(0, zeros)
a__zeros → zeros
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__ISNATLIST(cons(V1, V2)) → A__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
A__U51(tt, V1, V2) → A__U52(a__isNat(V1), V2)
A__U52(tt, V2) → A__ISNATLIST(V2)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
A__ISNATLIST(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNATILISTKIND(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
A__U51(tt, V1, V2) → A__ISNAT(V1)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → A__U61(mark(X1), X2)
A__U61(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → A__ISNATILISTKIND(X)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.
(16) Complex Obligation (AND)
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__LENGTH(cons(N, L)) → A__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
A__U61(tt, L) → A__LENGTH(mark(L))
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
A__LENGTH(cons(N, L)) → A__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__LENGTH(x1) ) = x1 + 2 |
POL( A__U61(x1, x2) ) = x1 + x2 + 2 |
POL( a__isNatList(x1) ) = x1 + 1 |
POL( cons(x1, x2) ) = x1 + 2x2 + 2 |
POL( a__U51(x1, ..., x3) ) = x1 + x2 + 2x3 |
POL( a__and(x1, x2) ) = x1 + 2x2 |
POL( a__isNatKind(x1) ) = 2 |
POL( isNatIListKind(x1) ) = 0 |
POL( isNatList(x1) ) = x1 |
POL( and(x1, x2) ) = x1 + 2x2 |
POL( a__isNatIListKind(x1) ) = 2 |
POL( a__U11(x1, x2) ) = 2 |
POL( a__U21(x1, x2) ) = 2 |
POL( U31(x1, x2) ) = x1 + x2 |
POL( a__U31(x1, x2) ) = x1 + x2 |
POL( a__U32(x1) ) = x1 + 1 |
POL( U41(x1, ..., x3) ) = x2 |
POL( a__U41(x1, ..., x3) ) = x2 + 2 |
POL( a__U42(x1, x2) ) = x1 |
POL( isNatIList(x1) ) = x1 |
POL( a__isNatIList(x1) ) = x1 + 2 |
POL( U51(x1, ..., x3) ) = x1 + x2 + 2x3 |
POL( U52(x1, x2) ) = x2 + 1 |
POL( a__U52(x1, x2) ) = x2 + 1 |
POL( a__U61(x1, x2) ) = 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatList(X) → isNatList(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__and(tt, X) → mark(X)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
mark(isNatKind(X)) → a__isNatKind(X)
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__and(X1, X2) → and(X1, X2)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__isNatKind(0) → tt
a__isNatKind(X) → isNatKind(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__U52(X1, X2) → U52(X1, X2)
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(X) → isNatIListKind(X)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U21(X1, X2) → U21(X1, X2)
a__U22(tt) → tt
a__U22(X) → U22(X)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U31(X1, X2) → U31(X1, X2)
a__U32(tt) → tt
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__U31(tt, V) → a__U32(a__isNatList(V))
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(nil) → 0
a__length(X) → length(X)
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
a__U61(tt, L) → s(a__length(mark(L)))
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__zeros → cons(0, zeros)
a__zeros → zeros
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U61(tt, L) → A__LENGTH(mark(L))
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(21) TRUE
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U51(tt, V1, V2) → A__U52(a__isNat(V1), V2)
A__U52(tt, V2) → A__ISNATLIST(V2)
A__ISNATLIST(cons(V1, V2)) → A__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
A__U51(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNATILISTKIND(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__ISNATLIST(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → A__ISNATILISTKIND(X)
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
A__U51(tt, V1, V2) → A__U52(a__isNat(V1), V2)
A__U51(tt, V1, V2) → A__ISNAT(V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNATILISTKIND(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATLIST(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = x2 |
POL( A__U21(x1, x2) ) = x2 + 1 |
POL( A__U51(x1, ..., x3) ) = x2 + x3 + 2 |
POL( A__U52(x1, x2) ) = x2 + 1 |
POL( a__isNat(x1) ) = 2x1 + 2 |
POL( length(x1) ) = 2x1 + 1 |
POL( a__U11(x1, x2) ) = x2 + 2 |
POL( a__isNatIListKind(x1) ) = 2x1 |
POL( a__U21(x1, x2) ) = x1 + 2x2 |
POL( a__isNatKind(x1) ) = x1 |
POL( isNat(x1) ) = x1 + 2 |
POL( and(x1, x2) ) = x1 + x2 + 2 |
POL( a__and(x1, x2) ) = 2x1 + x2 + 2 |
POL( isNatIListKind(x1) ) = 2x1 + 2 |
POL( cons(x1, x2) ) = x1 + 2x2 + 1 |
POL( isNatKind(x1) ) = x1 + 2 |
POL( U11(x1, x2) ) = 2x1 + x2 + 1 |
POL( a__U12(x1) ) = max{0, 2x1 - 2} |
POL( isNatList(x1) ) = 2x1 + 2 |
POL( a__isNatList(x1) ) = 2x1 + 2 |
POL( U21(x1, x2) ) = x1 + 2x2 + 2 |
POL( a__U31(x1, x2) ) = 2x1 + 2x2 + 2 |
POL( a__U32(x1) ) = max{0, -2} |
POL( U41(x1, ..., x3) ) = x1 + x3 + 2 |
POL( a__U41(x1, ..., x3) ) = 2x1 + 2x2 |
POL( a__U42(x1, x2) ) = 2x2 + 2 |
POL( a__U43(x1) ) = max{0, -2} |
POL( isNatIList(x1) ) = 2x1 |
POL( a__isNatIList(x1) ) = x1 + 1 |
POL( U51(x1, ..., x3) ) = x1 + x2 + 2x3 + 2 |
POL( a__U51(x1, ..., x3) ) = max{0, 2x1 + 2x2 - 2} |
POL( U52(x1, x2) ) = x1 + 2x2 + 1 |
POL( a__U52(x1, x2) ) = x1 + 2x2 + 2 |
POL( a__U53(x1) ) = x1 + 2 |
POL( U61(x1, x2) ) = 2x1 + 2x2 |
POL( a__U61(x1, x2) ) = x1 + 2x2 + 2 |
POL( a__length(x1) ) = 2x1 + 2 |
POL( A__ISNATLIST(x1) ) = x1 + 1 |
POL( A__ISNATKIND(x1) ) = x1 + 1 |
POL( A__ISNATILISTKIND(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U52(tt, V2) → A__ISNATLIST(V2)
A__ISNATLIST(cons(V1, V2)) → A__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)
A__AND(tt, X) → MARK(X)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U53(X)) → MARK(X)
MARK(isNatIListKind(X)) → A__ISNATILISTKIND(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes.
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
A__U52(tt, V2) → A__ISNATLIST(V2)
MARK(U53(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(27) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
A__AND(
tt,
X) →
MARK(
X) we obtained the following new rules [LPAR04]:
A__AND(tt, isNatIListKind(y_2)) → MARK(isNatIListKind(y_2)) → A__AND(tt, isNatIListKind(y_2)) → MARK(isNatIListKind(y_2))
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNatKind(V1), isNatIListKind(V2))
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
A__U52(tt, V2) → A__ISNATLIST(V2)
MARK(U53(X)) → MARK(X)
A__AND(tt, isNatIListKind(y_2)) → MARK(isNatIListKind(y_2))
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(29) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(U53(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatList(V1))
a__U12(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V) → a__U32(a__isNatList(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNat(V1), V2)
a__U42(tt, V2) → a__U43(a__isNatIList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNat(V1), V2)
a__U52(tt, V2) → a__U53(a__isNatList(V2))
a__U53(tt) → tt
a__U61(tt, L) → s(a__length(mark(L)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__and(a__isNatKind(V1), isNatIListKind(V2))
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__isNatIListKind(V1)
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__and(a__isNatKind(V1), isNatIListKind(V2)), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__and(a__and(a__isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(isNatKind(X)) → a__isNatKind(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(U53(X)) → MARK(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MARK(U53(X)) → MARK(X)
The graph contains the following edges 1 > 1
(34) YES