YES
0 QTRS
↳1 QTRSToCSRProof (⇔, 0 ms)
↳2 CSR
↳3 CSRInnermostProof (⇔, 0 ms)
↳4 CSR
↳5 CSDependencyPairsProof (⇔, 0 ms)
↳6 QCSDP
↳7 QCSDependencyGraphProof (⇔, 0 ms)
↳8 AND
↳9 QCSDP
↳10 QCSDPSubtermProof (⇔, 0 ms)
↳11 QCSDP
↳12 PIsEmptyProof (⇔, 0 ms)
↳13 YES
↳14 QCSDP
↳15 QCSDPSubtermProof (⇔, 0 ms)
↳16 QCSDP
↳17 PIsEmptyProof (⇔, 0 ms)
↳18 YES
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
natsFrom: {1}
cons: {1}
s: {1}
fst: {1}
pair: {1, 2}
snd: {1}
splitAt: {1, 2}
0: empty set
nil: empty set
u: {1}
head: {1}
tail: {1}
sel: {1, 2}
afterNth: {1, 2}
take: {1, 2}
The QTRS contained all rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is complete (and sound).
natsFrom(N) → cons(N, natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, XS), N, X, XS)
u(pair(YS, ZS), N, X, XS) → pair(cons(X, YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → XS
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom: {1}
cons: {1}
s: {1}
fst: {1}
pair: {1, 2}
snd: {1}
splitAt: {1, 2}
0: empty set
nil: empty set
u: {1}
head: {1}
tail: {1}
sel: {1, 2}
afterNth: {1, 2}
take: {1, 2}
natsFrom(N) → cons(N, natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, XS), N, X, XS)
u(pair(YS, ZS), N, X, XS) → pair(cons(X, YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → XS
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom: {1}
cons: {1}
s: {1}
fst: {1}
pair: {1, 2}
snd: {1}
splitAt: {1, 2}
0: empty set
nil: empty set
u: {1}
head: {1}
tail: {1}
sel: {1, 2}
afterNth: {1, 2}
take: {1, 2}
Innermost Strategy.
SPLITAT(s(N), cons(X, XS)) → U(splitAt(N, XS), N, X, XS)
SPLITAT(s(N), cons(X, XS)) → SPLITAT(N, XS)
SEL(N, XS) → HEAD(afterNth(N, XS))
SEL(N, XS) → AFTERNTH(N, XS)
TAKE(N, XS) → FST(splitAt(N, XS))
TAKE(N, XS) → SPLITAT(N, XS)
AFTERNTH(N, XS) → SND(splitAt(N, XS))
AFTERNTH(N, XS) → SPLITAT(N, XS)
SPLITAT(s(N), cons(X, XS)) → XS
U(pair(YS, ZS), N, X, XS) → X
TAIL(cons(N, XS)) → XS
natsFrom(s(x0))
s on positions {1}
natsFrom on positions {1}
SPLITAT(s(N), cons(X, XS)) → U'(XS)
U(pair(YS, ZS), N, X, XS) → U'(X)
TAIL(cons(N, XS)) → U'(XS)
U'(s(x_0)) → U'(x_0)
U'(natsFrom(x_0)) → U'(x_0)
U'(natsFrom(s(x0))) → NATSFROM(s(x0))
natsFrom(N) → cons(N, natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, XS), N, X, XS)
u(pair(YS, ZS), N, X, XS) → pair(cons(X, YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → XS
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(x0)
fst(pair(x0, x1))
snd(pair(x0, x1))
splitAt(0, x0)
splitAt(s(x0), cons(x1, x2))
u(pair(x0, x1), x2, x3, x4)
head(cons(x0, x1))
tail(cons(x0, x1))
sel(x0, x1)
take(x0, x1)
afterNth(x0, x1)
U'(s(x_0)) → U'(x_0)
U'(natsFrom(x_0)) → U'(x_0)
natsFrom(N) → cons(N, natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, XS), N, X, XS)
u(pair(YS, ZS), N, X, XS) → pair(cons(X, YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → XS
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(x0)
fst(pair(x0, x1))
snd(pair(x0, x1))
splitAt(0, x0)
splitAt(s(x0), cons(x1, x2))
u(pair(x0, x1), x2, x3, x4)
head(cons(x0, x1))
tail(cons(x0, x1))
sel(x0, x1)
take(x0, x1)
afterNth(x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U'(s(x_0)) → U'(x_0)
U'(natsFrom(x_0)) → U'(x_0)
natsFrom(N) → cons(N, natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, XS), N, X, XS)
u(pair(YS, ZS), N, X, XS) → pair(cons(X, YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → XS
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(x0)
fst(pair(x0, x1))
snd(pair(x0, x1))
splitAt(0, x0)
splitAt(s(x0), cons(x1, x2))
u(pair(x0, x1), x2, x3, x4)
head(cons(x0, x1))
tail(cons(x0, x1))
sel(x0, x1)
take(x0, x1)
afterNth(x0, x1)
SPLITAT(s(N), cons(X, XS)) → SPLITAT(N, XS)
natsFrom(N) → cons(N, natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, XS), N, X, XS)
u(pair(YS, ZS), N, X, XS) → pair(cons(X, YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → XS
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(x0)
fst(pair(x0, x1))
snd(pair(x0, x1))
splitAt(0, x0)
splitAt(s(x0), cons(x1, x2))
u(pair(x0, x1), x2, x3, x4)
head(cons(x0, x1))
tail(cons(x0, x1))
sel(x0, x1)
take(x0, x1)
afterNth(x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SPLITAT(s(N), cons(X, XS)) → SPLITAT(N, XS)
natsFrom(N) → cons(N, natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, XS), N, X, XS)
u(pair(YS, ZS), N, X, XS) → pair(cons(X, YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → XS
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(x0)
fst(pair(x0, x1))
snd(pair(x0, x1))
splitAt(0, x0)
splitAt(s(x0), cons(x1, x2))
u(pair(x0, x1), x2, x3, x4)
head(cons(x0, x1))
tail(cons(x0, x1))
sel(x0, x1)
take(x0, x1)
afterNth(x0, x1)