(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PRIMES → SIEVE(from(s(s(0))))
PRIMES → FROM(s(s(0)))
FROM(X) → CONS(X, n__from(s(X)))
TAIL(cons(X, Y)) → ACTIVATE(Y)
IF(true, X, Y) → ACTIVATE(X)
IF(false, X, Y) → ACTIVATE(Y)
FILTER(s(s(X)), cons(Y, Z)) → IF(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
FILTER(s(s(X)), cons(Y, Z)) → ACTIVATE(Z)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
SIEVE(cons(X, Y)) → CONS(X, n__filter(X, sieve(activate(Y))))
SIEVE(cons(X, Y)) → SIEVE(activate(Y))
SIEVE(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__filter(X1, X2)) → FILTER(X1, X2)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 10 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__filter(X1, X2)) → FILTER(X1, X2)
FILTER(s(s(X)), cons(Y, Z)) → ACTIVATE(Z)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
SIEVE(cons(X, Y)) → SIEVE(activate(Y))
SIEVE(cons(X, Y)) → ACTIVATE(Y)
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
SIEVE(cons(X, Y)) → ACTIVATE(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( SIEVE(x1) ) = max{0, 2x1 - 1} |
POL( activate(x1) ) = x1 + 2 |
POL( from(x1) ) = 2x1 + 2 |
POL( n__filter(x1, x2) ) = max{0, 2x1 + x2 - 2} |
POL( filter(x1, x2) ) = 2x1 + x2 |
POL( n__cons(x1, x2) ) = 2x1 + x2 + 2 |
POL( cons(x1, x2) ) = 2x1 + x2 + 2 |
POL( if(x1, ..., x3) ) = max{0, x1 + x2 - 1} |
POL( divides(x1, x2) ) = 2x2 + 2 |
POL( sieve(x1) ) = 2x1 + 2 |
POL( ACTIVATE(x1) ) = x1 + 2 |
POL( FILTER(x1, x2) ) = x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
filter(X1, X2) → n__filter(X1, X2)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
cons(X1, X2) → n__cons(X1, X2)
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__filter(X1, X2)) → FILTER(X1, X2)
FILTER(s(s(X)), cons(Y, Z)) → ACTIVATE(Z)
SIEVE(cons(X, Y)) → SIEVE(activate(Y))
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(8) Complex Obligation (AND)
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SIEVE(cons(X, Y)) → SIEVE(activate(Y))
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
SIEVE(
cons(
X,
Y)) →
SIEVE(
activate(
Y)) at position [0] we obtained the following new rules [LPAR04]:
SIEVE(cons(y0, n__from(x0))) → SIEVE(from(x0)) → SIEVE(cons(y0, n__from(x0))) → SIEVE(from(x0))
SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(filter(x0, x1)) → SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(filter(x0, x1))
SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1)) → SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, x0)) → SIEVE(x0) → SIEVE(cons(y0, x0)) → SIEVE(x0)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SIEVE(cons(y0, n__from(x0))) → SIEVE(from(x0))
SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(filter(x0, x1))
SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, x0)) → SIEVE(x0)
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
SIEVE(
cons(
y0,
n__from(
x0))) →
SIEVE(
from(
x0)) at position [0] we obtained the following new rules [LPAR04]:
SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0)))) → SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))
SIEVE(cons(y0, n__from(x0))) → SIEVE(n__from(x0)) → SIEVE(cons(y0, n__from(x0))) → SIEVE(n__from(x0))
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(filter(x0, x1))
SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, x0)) → SIEVE(x0)
SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))
SIEVE(cons(y0, n__from(x0))) → SIEVE(n__from(x0))
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(14) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(filter(x0, x1))
SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, x0)) → SIEVE(x0)
SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
SIEVE(
cons(
y0,
n__filter(
x0,
x1))) →
SIEVE(
filter(
x0,
x1)) at position [0] we obtained the following new rules [LPAR04]:
SIEVE(cons(y0, n__filter(s(s(x0)), cons(x1, x2)))) → SIEVE(if(divides(s(s(x0)), x1), n__filter(s(s(x0)), activate(x2)), n__cons(x1, n__filter(x0, sieve(x1))))) → SIEVE(cons(y0, n__filter(s(s(x0)), cons(x1, x2)))) → SIEVE(if(divides(s(s(x0)), x1), n__filter(s(s(x0)), activate(x2)), n__cons(x1, n__filter(x0, sieve(x1)))))
SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(n__filter(x0, x1)) → SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(n__filter(x0, x1))
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, x0)) → SIEVE(x0)
SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))
SIEVE(cons(y0, n__filter(s(s(x0)), cons(x1, x2)))) → SIEVE(if(divides(s(s(x0)), x1), n__filter(s(s(x0)), activate(x2)), n__cons(x1, n__filter(x0, sieve(x1)))))
SIEVE(cons(y0, n__filter(x0, x1))) → SIEVE(n__filter(x0, x1))
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, x0)) → SIEVE(x0)
SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
SIEVE(cons(y0, x0)) → SIEVE(x0)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SIEVE(
x1) =
x1
cons(
x1,
x2) =
cons(
x2)
n__cons(
x1,
x2) =
x2
n__from(
x1) =
n__from
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
cons_1=1
n__from=1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
cons(X1, X2) → n__cons(X1, X2)
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(22) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
SIEVE(cons(y0, n__cons(x0, x1))) → SIEVE(cons(x0, x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SIEVE(
x1) =
x1
cons(
x1,
x2) =
cons(
x2)
n__cons(
x1,
x2) =
n__cons(
x2)
n__from(
x1) =
n__from
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
cons_1=2
n__from=1
n__cons_1=1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
cons(X1, X2) → n__cons(X1, X2)
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SIEVE(cons(y0, n__from(x0))) → SIEVE(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(24) NonTerminationLoopProof (COMPLETE transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
SIEVE(
cons(
y0,
n__from(
x0))) evaluates to t =
SIEVE(
cons(
x0,
n__from(
s(
x0))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [y0 / x0, x0 / s(x0)]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from SIEVE(cons(y0, n__from(x0))) to SIEVE(cons(x0, n__from(s(x0)))).
(25) NO
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FILTER(s(s(X)), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__filter(X1, X2)) → FILTER(X1, X2)
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(s(s(X)), activate(Z)), n__cons(Y, n__filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, sieve(activate(Y))))
from(X) → n__from(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(X)
activate(n__filter(X1, X2)) → filter(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(27) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FILTER(s(s(X)), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__filter(X1, X2)) → FILTER(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(29) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ACTIVATE(n__filter(X1, X2)) → FILTER(X1, X2)
The graph contains the following edges 1 > 1, 1 > 2
- FILTER(s(s(X)), cons(Y, Z)) → ACTIVATE(Z)
The graph contains the following edges 2 > 1
(30) YES