(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(active(x1)) = x1
POL(adx(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(hd(x1)) = 1 + x1
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nats) = 2
POL(s(x1)) = x1
POL(tl(x1)) = 2 + 2·x1
POL(zeros) = 2
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(active(x1)) = x1
POL(adx(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(hd(x1)) = 2 + 2·x1
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nats) = 2
POL(s(x1)) = x1
POL(tl(x1)) = 2 + x1
POL(zeros) = 1
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
active(nats) → mark(adx(zeros))
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
ACTIVE(incr(cons(X, Y))) → CONS(s(X), incr(Y))
ACTIVE(incr(cons(X, Y))) → S(X)
ACTIVE(incr(cons(X, Y))) → INCR(Y)
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
ACTIVE(adx(cons(X, Y))) → INCR(cons(X, adx(Y)))
ACTIVE(adx(cons(X, Y))) → CONS(X, adx(Y))
ACTIVE(adx(cons(X, Y))) → ADX(Y)
MARK(nats) → ACTIVE(nats)
MARK(adx(X)) → ACTIVE(adx(mark(X)))
MARK(adx(X)) → ADX(mark(X))
MARK(adx(X)) → MARK(X)
MARK(zeros) → ACTIVE(zeros)
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(0) → ACTIVE(0)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(hd(X)) → HD(mark(X))
MARK(hd(X)) → MARK(X)
MARK(tl(X)) → ACTIVE(tl(mark(X)))
MARK(tl(X)) → TL(mark(X))
MARK(tl(X)) → MARK(X)
ADX(mark(X)) → ADX(X)
ADX(active(X)) → ADX(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
INCR(mark(X)) → INCR(X)
INCR(active(X)) → INCR(X)
S(mark(X)) → S(X)
S(active(X)) → S(X)
HD(mark(X)) → HD(X)
HD(active(X)) → HD(X)
TL(mark(X)) → TL(X)
TL(active(X)) → TL(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 13 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TL(active(X)) → TL(X)
TL(mark(X)) → TL(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TL(active(X)) → TL(X)
TL(mark(X)) → TL(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- TL(active(X)) → TL(X)
The graph contains the following edges 1 > 1
- TL(mark(X)) → TL(X)
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HD(active(X)) → HD(X)
HD(mark(X)) → HD(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HD(active(X)) → HD(X)
HD(mark(X)) → HD(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- HD(active(X)) → HD(X)
The graph contains the following edges 1 > 1
- HD(mark(X)) → HD(X)
The graph contains the following edges 1 > 1
(18) YES
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(22) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- S(active(X)) → S(X)
The graph contains the following edges 1 > 1
- S(mark(X)) → S(X)
The graph contains the following edges 1 > 1
(23) YES
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(active(X)) → INCR(X)
INCR(mark(X)) → INCR(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(active(X)) → INCR(X)
INCR(mark(X)) → INCR(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(27) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- INCR(active(X)) → INCR(X)
The graph contains the following edges 1 > 1
- INCR(mark(X)) → INCR(X)
The graph contains the following edges 1 > 1
(28) YES
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(30) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(32) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- CONS(X1, mark(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- CONS(mark(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(active(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(X1, active(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(33) YES
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADX(active(X)) → ADX(X)
ADX(mark(X)) → ADX(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADX(active(X)) → ADX(X)
ADX(mark(X)) → ADX(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(37) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ADX(active(X)) → ADX(X)
The graph contains the following edges 1 > 1
- ADX(mark(X)) → ADX(X)
The graph contains the following edges 1 > 1
(38) YES
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(adx(X)) → MARK(X)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(hd(X)) → MARK(X)
MARK(tl(X)) → ACTIVE(tl(mark(X)))
MARK(tl(X)) → MARK(X)
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(40) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
MARK(tl(X)) → MARK(X)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVE(x1)) = 2·x1
POL(MARK(x1)) = 2·x1
POL(active(x1)) = x1
POL(adx(x1)) = 2·x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(hd(x1)) = 2·x1
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nats) = 1
POL(s(x1)) = x1
POL(tl(x1)) = 1 + x1
POL(zeros) = 0
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(adx(X)) → MARK(X)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(hd(X)) → MARK(X)
MARK(tl(X)) → ACTIVE(tl(mark(X)))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(42) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
MARK(adx(X)) → MARK(X)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVE(x1)) = 2 + 2·x1
POL(MARK(x1)) = 2 + 2·x1
POL(active(x1)) = x1
POL(adx(x1)) = 2 + 2·x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(hd(x1)) = x1
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nats) = 1
POL(s(x1)) = x1
POL(tl(x1)) = 2 + x1
POL(zeros) = 2
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(hd(X)) → MARK(X)
MARK(tl(X)) → ACTIVE(tl(mark(X)))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(44) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
MARK(hd(X)) → MARK(X)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVE(x1)) = 2 + 2·x1
POL(MARK(x1)) = 2 + 2·x1
POL(active(x1)) = x1
POL(adx(x1)) = 1 + 2·x1
POL(cons(x1, x2)) = x1 + x2
POL(hd(x1)) = 1 + 2·x1
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nats) = 1
POL(s(x1)) = x1
POL(tl(x1)) = 2 + x1
POL(zeros) = 2
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(tl(X)) → ACTIVE(tl(mark(X)))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(46) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
MARK(
cons(
X1,
X2)) →
ACTIVE(
cons(
X1,
X2)) at position [0] we obtained the following new rules [LPAR04]:
MARK(cons(mark(x0), x1)) → ACTIVE(cons(x0, x1)) → MARK(cons(mark(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(cons(x0, mark(x1))) → ACTIVE(cons(x0, x1)) → MARK(cons(x0, mark(x1))) → ACTIVE(cons(x0, x1))
MARK(cons(active(x0), x1)) → ACTIVE(cons(x0, x1)) → MARK(cons(active(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(cons(x0, active(x1))) → ACTIVE(cons(x0, x1)) → MARK(cons(x0, active(x1))) → ACTIVE(cons(x0, x1))
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(tl(X)) → ACTIVE(tl(mark(X)))
MARK(cons(mark(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(cons(x0, mark(x1))) → ACTIVE(cons(x0, x1))
MARK(cons(active(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(cons(x0, active(x1))) → ACTIVE(cons(x0, x1))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(48) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(tl(X)) → ACTIVE(tl(mark(X)))
MARK(cons(mark(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(cons(x0, mark(x1))) → ACTIVE(cons(x0, x1))
MARK(cons(active(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(cons(x0, active(x1))) → ACTIVE(cons(x0, x1))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(50) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(adx(X)) → ACTIVE(adx(mark(X)))
ACTIVE(incr(cons(X, Y))) → MARK(cons(s(X), incr(Y)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = x1 + 1 |
POL( incr(x1) ) = 2x1 + 1 |
POL( tl(x1) ) = max{0, -2} |
POL( cons(x1, x2) ) = max{0, -1} |
POL( MARK(x1) ) = 2x1 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(nats) → active(nats)
mark(cons(X1, X2)) → active(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
mark(adx(X)) → active(adx(mark(X)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(zeros) → active(zeros)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
mark(0) → active(0)
adx(active(X)) → adx(X)
adx(mark(X)) → adx(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
hd(active(X)) → hd(X)
hd(mark(X)) → hd(X)
tl(active(X)) → tl(X)
tl(mark(X)) → tl(X)
(51) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(s(X)) → ACTIVE(s(X))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(tl(X)) → ACTIVE(tl(mark(X)))
MARK(cons(mark(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(cons(x0, mark(x1))) → ACTIVE(cons(x0, x1))
MARK(cons(active(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(cons(x0, active(x1))) → ACTIVE(cons(x0, x1))
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(52) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(adx(cons(X, Y))) → MARK(incr(cons(X, adx(Y))))
MARK(s(X)) → ACTIVE(s(X))
MARK(hd(X)) → ACTIVE(hd(mark(X)))
MARK(tl(X)) → ACTIVE(tl(mark(X)))
MARK(cons(mark(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(cons(x0, mark(x1))) → ACTIVE(cons(x0, x1))
MARK(cons(active(x0), x1)) → ACTIVE(cons(x0, x1))
MARK(cons(x0, active(x1))) → ACTIVE(cons(x0, x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(
x1) =
ACTIVE
MARK(
x1) =
x1
incr(
x1) =
incr
s(
x1) =
s
hd(
x1) =
hd
tl(
x1) =
tl
cons(
x1,
x2) =
cons
Knuth-Bendix order [KBO] with precedence:
s > ACTIVE > incr
and weight map:
s=1
hd=2
ACTIVE=1
cons=2
tl=2
incr=1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
(53) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
mark(nats) → active(nats)
mark(adx(X)) → active(adx(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(X))
mark(hd(X)) → active(hd(mark(X)))
mark(tl(X)) → active(tl(mark(X)))
adx(mark(X)) → adx(X)
adx(active(X)) → adx(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
hd(mark(X)) → hd(X)
hd(active(X)) → hd(X)
tl(mark(X)) → tl(X)
tl(active(X)) → tl(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(54) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(55) YES