(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(from(X)) → S(X)
ACTIVE(2ndspos(0, Z)) → MARK(rnil)
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
ACTIVE(2ndspos(s(N), cons(X, Z))) → 2NDSPOS(s(N), cons2(X, Z))
ACTIVE(2ndspos(s(N), cons(X, Z))) → CONS2(X, Z)
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → RCONS(posrecip(Y), 2ndsneg(N, Z))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → POSRECIP(Y)
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → 2NDSNEG(N, Z)
ACTIVE(2ndsneg(0, Z)) → MARK(rnil)
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → 2NDSNEG(s(N), cons2(X, Z))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → CONS2(X, Z)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → RCONS(negrecip(Y), 2ndspos(N, Z))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → NEGRECIP(Y)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → 2NDSPOS(N, Z)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
ACTIVE(pi(X)) → 2NDSPOS(X, from(0))
ACTIVE(pi(X)) → FROM(0)
ACTIVE(plus(0, Y)) → MARK(Y)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
ACTIVE(plus(s(X), Y)) → S(plus(X, Y))
ACTIVE(plus(s(X), Y)) → PLUS(X, Y)
ACTIVE(times(0, Y)) → MARK(0)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
ACTIVE(times(s(X), Y)) → PLUS(Y, times(X, Y))
ACTIVE(times(s(X), Y)) → TIMES(X, Y)
ACTIVE(square(X)) → MARK(times(X, X))
ACTIVE(square(X)) → TIMES(X, X)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → FROM(mark(X))
MARK(from(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
MARK(2ndspos(X1, X2)) → 2NDSPOS(mark(X1), mark(X2))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
MARK(rnil) → ACTIVE(rnil)
MARK(cons2(X1, X2)) → ACTIVE(cons2(X1, mark(X2)))
MARK(cons2(X1, X2)) → CONS2(X1, mark(X2))
MARK(cons2(X1, X2)) → MARK(X2)
MARK(rcons(X1, X2)) → ACTIVE(rcons(mark(X1), mark(X2)))
MARK(rcons(X1, X2)) → RCONS(mark(X1), mark(X2))
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
MARK(posrecip(X)) → ACTIVE(posrecip(mark(X)))
MARK(posrecip(X)) → POSRECIP(mark(X))
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
MARK(2ndsneg(X1, X2)) → 2NDSNEG(mark(X1), mark(X2))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(negrecip(X)) → ACTIVE(negrecip(mark(X)))
MARK(negrecip(X)) → NEGRECIP(mark(X))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(pi(X)) → PI(mark(X))
MARK(pi(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → TIMES(mark(X1), mark(X2))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))
MARK(square(X)) → SQUARE(mark(X))
MARK(square(X)) → MARK(X)
FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
2NDSPOS(mark(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(X1, mark(X2)) → 2NDSPOS(X1, X2)
2NDSPOS(active(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(X1, active(X2)) → 2NDSPOS(X1, X2)
CONS2(mark(X1), X2) → CONS2(X1, X2)
CONS2(X1, mark(X2)) → CONS2(X1, X2)
CONS2(active(X1), X2) → CONS2(X1, X2)
CONS2(X1, active(X2)) → CONS2(X1, X2)
RCONS(mark(X1), X2) → RCONS(X1, X2)
RCONS(X1, mark(X2)) → RCONS(X1, X2)
RCONS(active(X1), X2) → RCONS(X1, X2)
RCONS(X1, active(X2)) → RCONS(X1, X2)
POSRECIP(mark(X)) → POSRECIP(X)
POSRECIP(active(X)) → POSRECIP(X)
2NDSNEG(mark(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)
2NDSNEG(active(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(X1, active(X2)) → 2NDSNEG(X1, X2)
NEGRECIP(mark(X)) → NEGRECIP(X)
NEGRECIP(active(X)) → NEGRECIP(X)
PI(mark(X)) → PI(X)
PI(active(X)) → PI(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
TIMES(mark(X1), X2) → TIMES(X1, X2)
TIMES(X1, mark(X2)) → TIMES(X1, X2)
TIMES(active(X1), X2) → TIMES(X1, X2)
TIMES(X1, active(X2)) → TIMES(X1, X2)
SQUARE(mark(X)) → SQUARE(X)
SQUARE(active(X)) → SQUARE(X)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 14 SCCs with 38 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SQUARE(active(X)) → SQUARE(X)
SQUARE(mark(X)) → SQUARE(X)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SQUARE(active(X)) → SQUARE(X)
SQUARE(mark(X)) → SQUARE(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SQUARE(active(X)) → SQUARE(X)
The graph contains the following edges 1 > 1
- SQUARE(mark(X)) → SQUARE(X)
The graph contains the following edges 1 > 1
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(X1, mark(X2)) → TIMES(X1, X2)
TIMES(mark(X1), X2) → TIMES(X1, X2)
TIMES(active(X1), X2) → TIMES(X1, X2)
TIMES(X1, active(X2)) → TIMES(X1, X2)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMES(X1, mark(X2)) → TIMES(X1, X2)
TIMES(mark(X1), X2) → TIMES(X1, X2)
TIMES(active(X1), X2) → TIMES(X1, X2)
TIMES(X1, active(X2)) → TIMES(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- TIMES(X1, mark(X2)) → TIMES(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- TIMES(mark(X1), X2) → TIMES(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- TIMES(active(X1), X2) → TIMES(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- TIMES(X1, active(X2)) → TIMES(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(14) YES
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- PLUS(X1, mark(X2)) → PLUS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- PLUS(mark(X1), X2) → PLUS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- PLUS(active(X1), X2) → PLUS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- PLUS(X1, active(X2)) → PLUS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(19) YES
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PI(active(X)) → PI(X)
PI(mark(X)) → PI(X)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PI(active(X)) → PI(X)
PI(mark(X)) → PI(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- PI(active(X)) → PI(X)
The graph contains the following edges 1 > 1
- PI(mark(X)) → PI(X)
The graph contains the following edges 1 > 1
(24) YES
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
NEGRECIP(active(X)) → NEGRECIP(X)
NEGRECIP(mark(X)) → NEGRECIP(X)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
NEGRECIP(active(X)) → NEGRECIP(X)
NEGRECIP(mark(X)) → NEGRECIP(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- NEGRECIP(active(X)) → NEGRECIP(X)
The graph contains the following edges 1 > 1
- NEGRECIP(mark(X)) → NEGRECIP(X)
The graph contains the following edges 1 > 1
(29) YES
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)
2NDSNEG(mark(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(active(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(X1, active(X2)) → 2NDSNEG(X1, X2)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)
2NDSNEG(mark(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(active(X1), X2) → 2NDSNEG(X1, X2)
2NDSNEG(X1, active(X2)) → 2NDSNEG(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- 2NDSNEG(X1, mark(X2)) → 2NDSNEG(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- 2NDSNEG(mark(X1), X2) → 2NDSNEG(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- 2NDSNEG(active(X1), X2) → 2NDSNEG(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- 2NDSNEG(X1, active(X2)) → 2NDSNEG(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(34) YES
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
POSRECIP(active(X)) → POSRECIP(X)
POSRECIP(mark(X)) → POSRECIP(X)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(36) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
POSRECIP(active(X)) → POSRECIP(X)
POSRECIP(mark(X)) → POSRECIP(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(38) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- POSRECIP(active(X)) → POSRECIP(X)
The graph contains the following edges 1 > 1
- POSRECIP(mark(X)) → POSRECIP(X)
The graph contains the following edges 1 > 1
(39) YES
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
RCONS(X1, mark(X2)) → RCONS(X1, X2)
RCONS(mark(X1), X2) → RCONS(X1, X2)
RCONS(active(X1), X2) → RCONS(X1, X2)
RCONS(X1, active(X2)) → RCONS(X1, X2)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(41) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
RCONS(X1, mark(X2)) → RCONS(X1, X2)
RCONS(mark(X1), X2) → RCONS(X1, X2)
RCONS(active(X1), X2) → RCONS(X1, X2)
RCONS(X1, active(X2)) → RCONS(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(43) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- RCONS(X1, mark(X2)) → RCONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- RCONS(mark(X1), X2) → RCONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- RCONS(active(X1), X2) → RCONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- RCONS(X1, active(X2)) → RCONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(44) YES
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS2(X1, mark(X2)) → CONS2(X1, X2)
CONS2(mark(X1), X2) → CONS2(X1, X2)
CONS2(active(X1), X2) → CONS2(X1, X2)
CONS2(X1, active(X2)) → CONS2(X1, X2)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(46) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS2(X1, mark(X2)) → CONS2(X1, X2)
CONS2(mark(X1), X2) → CONS2(X1, X2)
CONS2(active(X1), X2) → CONS2(X1, X2)
CONS2(X1, active(X2)) → CONS2(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(48) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- CONS2(X1, mark(X2)) → CONS2(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- CONS2(mark(X1), X2) → CONS2(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS2(active(X1), X2) → CONS2(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS2(X1, active(X2)) → CONS2(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(49) YES
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
2NDSPOS(X1, mark(X2)) → 2NDSPOS(X1, X2)
2NDSPOS(mark(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(active(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(X1, active(X2)) → 2NDSPOS(X1, X2)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(51) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
2NDSPOS(X1, mark(X2)) → 2NDSPOS(X1, X2)
2NDSPOS(mark(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(active(X1), X2) → 2NDSPOS(X1, X2)
2NDSPOS(X1, active(X2)) → 2NDSPOS(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(53) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- 2NDSPOS(X1, mark(X2)) → 2NDSPOS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- 2NDSPOS(mark(X1), X2) → 2NDSPOS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- 2NDSPOS(active(X1), X2) → 2NDSPOS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- 2NDSPOS(X1, active(X2)) → 2NDSPOS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(54) YES
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(56) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(57) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(58) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- S(active(X)) → S(X)
The graph contains the following edges 1 > 1
- S(mark(X)) → S(X)
The graph contains the following edges 1 > 1
(59) YES
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(61) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(63) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- CONS(X1, mark(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- CONS(mark(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(active(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(X1, active(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(64) YES
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(active(X)) → FROM(X)
FROM(mark(X)) → FROM(X)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(66) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(active(X)) → FROM(X)
FROM(mark(X)) → FROM(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(68) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- FROM(active(X)) → FROM(X)
The graph contains the following edges 1 > 1
- FROM(mark(X)) → FROM(X)
The graph contains the following edges 1 > 1
(69) YES
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(cons2(X1, X2)) → ACTIVE(cons2(X1, mark(X2)))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
MARK(rcons(X1, X2)) → ACTIVE(rcons(mark(X1), mark(X2)))
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
MARK(posrecip(X)) → ACTIVE(posrecip(mark(X)))
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(negrecip(X)) → ACTIVE(negrecip(mark(X)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
ACTIVE(square(X)) → MARK(times(X, X))
MARK(pi(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))
MARK(square(X)) → MARK(X)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(71) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(rcons(X1, X2)) → ACTIVE(rcons(mark(X1), mark(X2)))
MARK(posrecip(X)) → ACTIVE(posrecip(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2ndsneg(x1, x2) ) = 1 |
POL( 2ndspos(x1, x2) ) = 1 |
POL( posrecip(x1) ) = max{0, -2} |
POL( active(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(72) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(cons2(X1, X2)) → ACTIVE(cons2(X1, mark(X2)))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(negrecip(X)) → ACTIVE(negrecip(mark(X)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
ACTIVE(square(X)) → MARK(times(X, X))
MARK(pi(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))
MARK(square(X)) → MARK(X)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(73) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2ndsneg(x1, x2) ) = 1 |
POL( 2ndspos(x1, x2) ) = 1 |
POL( active(x1) ) = 2x1 + 1 |
POL( rcons(x1, x2) ) = x1 + 2x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(74) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(cons2(X1, X2)) → ACTIVE(cons2(X1, mark(X2)))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(negrecip(X)) → ACTIVE(negrecip(mark(X)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
ACTIVE(square(X)) → MARK(times(X, X))
MARK(pi(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))
MARK(square(X)) → MARK(X)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(75) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(cons2(X1, X2)) → ACTIVE(cons2(X1, mark(X2)))
MARK(negrecip(X)) → ACTIVE(negrecip(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2ndsneg(x1, x2) ) = 1 |
POL( ACTIVE(x1) ) = max{0, 2x1 - 1} |
POL( 2ndspos(x1, x2) ) = 1 |
POL( cons2(x1, x2) ) = max{0, -2} |
POL( s(x1) ) = max{0, -1} |
POL( rcons(x1, x2) ) = max{0, -2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
ACTIVE(square(X)) → MARK(times(X, X))
MARK(pi(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → ACTIVE(square(mark(X)))
MARK(square(X)) → MARK(X)
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(77) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(pi(X)) → MARK(X)
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 3A | + | 0A | · | x1 |
POL(from(x1)) = | 5A | + | 0A | · | x1 |
POL(ACTIVE(x1)) = | 5A | + | 0A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | 3A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(2ndspos(x1, x2)) = | 5A | + | 4A | · | x1 | + | 0A | · | x2 |
POL(cons2(x1, x2)) = | 4A | + | -I | · | x1 | + | 0A | · | x2 |
POL(rcons(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(posrecip(x1)) = | -I | + | 0A | · | x1 |
POL(2ndsneg(x1, x2)) = | 5A | + | 4A | · | x1 | + | 0A | · | x2 |
POL(negrecip(x1)) = | -I | + | 0A | · | x1 |
POL(plus(x1, x2)) = | 5A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(times(x1, x2)) = | 5A | + | 2A | · | x1 | + | 1A | · | x2 |
POL(square(x1)) = | 5A | + | 2A | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
(78) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
ACTIVE(square(X)) → MARK(times(X, X))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(square(X)) → ACTIVE(square(mark(X)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(79) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(rcons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 4A | + | 2A | · | x1 |
POL(from(x1)) = | 2A | + | 0A | · | x1 |
POL(ACTIVE(x1)) = | 4A | + | 2A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(2ndspos(x1, x2)) = | -I | + | 3A | · | x1 | + | 3A | · | x2 |
POL(cons2(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(rcons(x1, x2)) = | 3A | + | 1A | · | x1 | + | 0A | · | x2 |
POL(posrecip(x1)) = | 0A | + | 1A | · | x1 |
POL(2ndsneg(x1, x2)) = | 0A | + | 3A | · | x1 | + | 3A | · | x2 |
POL(negrecip(x1)) = | -I | + | 2A | · | x1 |
POL(plus(x1, x2)) = | 0A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(times(x1, x2)) = | 0A | + | -I | · | x1 | + | 1A | · | x2 |
POL(square(x1)) = | 1A | + | 3A | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
(80) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
ACTIVE(square(X)) → MARK(times(X, X))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(square(X)) → ACTIVE(square(mark(X)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(81) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(plus(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 0A | + | 0A | · | x1 |
POL(from(x1)) = | 0A | + | 0A | · | x1 |
POL(ACTIVE(x1)) = | 0A | + | 0A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(2ndspos(x1, x2)) = | 1A | + | 1A | · | x1 | + | 0A | · | x2 |
POL(cons2(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(rcons(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(posrecip(x1)) = | -I | + | 0A | · | x1 |
POL(2ndsneg(x1, x2)) = | -I | + | 1A | · | x1 | + | 0A | · | x2 |
POL(negrecip(x1)) = | -I | + | 0A | · | x1 |
POL(plus(x1, x2)) = | 4A | + | 5A | · | x1 | + | 0A | · | x2 |
POL(times(x1, x2)) = | 0A | + | 5A | · | x1 | + | 5A | · | x2 |
POL(square(x1)) = | 0A | + | 5A | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
(82) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → MARK(X)
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
ACTIVE(square(X)) → MARK(times(X, X))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(square(X)) → ACTIVE(square(mark(X)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(83) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(from(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | -I | + | 2A | · | x1 |
POL(from(x1)) = | -I | + | 1A | · | x1 |
POL(ACTIVE(x1)) = | -I | + | 2A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(2ndspos(x1, x2)) = | 4A | + | -I | · | x1 | + | 0A | · | x2 |
POL(cons2(x1, x2)) = | 3A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(rcons(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(posrecip(x1)) = | -I | + | 0A | · | x1 |
POL(2ndsneg(x1, x2)) = | 4A | + | -I | · | x1 | + | 0A | · | x2 |
POL(negrecip(x1)) = | -I | + | 0A | · | x1 |
POL(plus(x1, x2)) = | 4A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(times(x1, x2)) = | 4A | + | -I | · | x1 | + | 0A | · | x2 |
POL(square(x1)) = | 4A | + | 0A | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
(84) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(negrecip(X)) → MARK(X)
MARK(pi(X)) → ACTIVE(pi(mark(X)))
ACTIVE(square(X)) → MARK(times(X, X))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(square(X)) → ACTIVE(square(mark(X)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(85) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(negrecip(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 1A | + | 0A | · | x1 |
POL(from(x1)) = | -I | + | 0A | · | x1 |
POL(ACTIVE(x1)) = | 1A | + | 0A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(2ndspos(x1, x2)) = | -I | + | 5A | · | x1 | + | 0A | · | x2 |
POL(cons2(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(rcons(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(posrecip(x1)) = | -I | + | 0A | · | x1 |
POL(2ndsneg(x1, x2)) = | -I | + | 5A | · | x1 | + | 0A | · | x2 |
POL(negrecip(x1)) = | 2A | + | 1A | · | x1 |
POL(plus(x1, x2)) = | -I | + | 3A | · | x1 | + | 0A | · | x2 |
POL(times(x1, x2)) = | -I | + | 0A | · | x1 | + | 3A | · | x2 |
POL(square(x1)) = | -I | + | 3A | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
(86) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(posrecip(X)) → MARK(X)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(pi(X)) → ACTIVE(pi(mark(X)))
ACTIVE(square(X)) → MARK(times(X, X))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(square(X)) → ACTIVE(square(mark(X)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(87) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(posrecip(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 5A | + | 1A | · | x1 |
POL(from(x1)) = | 0A | + | 0A | · | x1 |
POL(ACTIVE(x1)) = | 5A | + | 1A | · | x1 |
POL(mark(x1)) = | 4A | + | 0A | · | x1 |
POL(cons(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(2ndspos(x1, x2)) = | 4A | + | -I | · | x1 | + | 0A | · | x2 |
POL(cons2(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(rcons(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(posrecip(x1)) = | 5A | + | 1A | · | x1 |
POL(2ndsneg(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(negrecip(x1)) = | 5A | + | 1A | · | x1 |
POL(plus(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(times(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(square(x1)) = | 4A | + | 0A | · | x1 |
POL(active(x1)) = | 4A | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
(88) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(pi(X)) → ACTIVE(pi(mark(X)))
ACTIVE(square(X)) → MARK(times(X, X))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(square(X)) → ACTIVE(square(mark(X)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(89) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(square(X)) → MARK(times(X, X))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | -I | + | 5A | · | x1 |
POL(from(x1)) = | 1A | + | 5A | · | x1 |
POL(ACTIVE(x1)) = | -I | + | 5A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(2ndspos(x1, x2)) = | 0A | + | -I | · | x1 | + | 0A | · | x2 |
POL(cons2(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(rcons(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(posrecip(x1)) = | -I | + | 0A | · | x1 |
POL(2ndsneg(x1, x2)) = | 0A | + | -I | · | x1 | + | 0A | · | x2 |
POL(negrecip(x1)) = | -I | + | 3A | · | x1 |
POL(plus(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(times(x1, x2)) = | -I | + | 0A | · | x1 | + | 4A | · | x2 |
POL(square(x1)) = | 0A | + | 5A | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
(90) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
MARK(square(X)) → ACTIVE(square(mark(X)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(91) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(square(X)) → ACTIVE(square(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2ndsneg(x1, x2) ) = 2 |
POL( ACTIVE(x1) ) = max{0, x1 - 1} |
POL( 2ndspos(x1, x2) ) = 2 |
POL( square(x1) ) = max{0, -2} |
POL( active(x1) ) = max{0, x1 - 1} |
POL( cons(x1, x2) ) = max{0, 2x1 + x2 - 1} |
POL( s(x1) ) = max{0, x1 - 2} |
POL( cons2(x1, x2) ) = max{0, -2} |
POL( rcons(x1, x2) ) = x2 + 2 |
POL( posrecip(x1) ) = x1 + 1 |
POL( negrecip(x1) ) = max{0, 2x1 - 2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
from(active(X)) → from(X)
from(mark(X)) → from(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(92) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(93) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 5A | + | 1A | · | x1 |
POL(from(x1)) = | 5A | + | 3A | · | x1 |
POL(ACTIVE(x1)) = | 5A | + | 1A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | 5A | + | 3A | · | x1 | + | 0A | · | x2 |
POL(2ndspos(x1, x2)) = | 1A | + | -I | · | x1 | + | 0A | · | x2 |
POL(cons2(x1, x2)) = | 2A | + | -I | · | x1 | + | 0A | · | x2 |
POL(rcons(x1, x2)) = | 1A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(posrecip(x1)) = | 1A | + | 2A | · | x1 |
POL(2ndsneg(x1, x2)) = | 1A | + | -I | · | x1 | + | 0A | · | x2 |
POL(negrecip(x1)) = | 5A | + | -I | · | x1 |
POL(plus(x1, x2)) = | 4A | + | -I | · | x1 | + | 0A | · | x2 |
POL(times(x1, x2)) = | 0A | + | 3A | · | x1 | + | 3A | · | x2 |
POL(active(x1)) = | 0A | + | 0A | · | x1 |
POL(square(x1)) = | 1A | + | 4A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(94) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(95) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(pi(X)) → MARK(2ndspos(X, from(0)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(
x1) =
x1
from(
x1) =
from
ACTIVE(
x1) =
x1
cons(
x1,
x2) =
x2
2ndspos(
x1,
x2) =
x2
cons2(
x1,
x2) =
x2
rcons(
x1,
x2) =
x2
2ndsneg(
x1,
x2) =
x2
s(
x1) =
x1
mark(
x1) =
x1
pi(
x1) =
pi
plus(
x1,
x2) =
x2
times(
x1,
x2) =
times
active(
x1) =
x1
posrecip(
x1) =
posrecip
negrecip(
x1) =
negrecip
square(
x1) =
square
0 =
0
rnil =
rnil
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
negrecip=2
rnil=1
pi=3
0=2
square=4
from=2
posrecip=2
times=3
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(96) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → MARK(X2)
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
MARK(2ndsneg(X1, X2)) → MARK(X2)
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(97) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2ndsneg(x1, x2) ) = x2 + 1 |
POL( ACTIVE(x1) ) = x1 + 1 |
POL( 2ndspos(x1, x2) ) = x2 + 1 |
POL( cons2(x1, x2) ) = x2 |
POL( rcons(x1, x2) ) = 2x1 + x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(98) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(cons2(X1, X2)) → MARK(X2)
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(99) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons2(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2ndsneg(x1, x2) ) = 1 |
POL( ACTIVE(x1) ) = x1 + 2 |
POL( 2ndspos(x1, x2) ) = 1 |
POL( plus(x1, x2) ) = 2x2 |
POL( cons(x1, x2) ) = max{0, -2} |
POL( cons2(x1, x2) ) = x1 + 2x2 + 2 |
POL( rcons(x1, x2) ) = 2x1 + x2 |
POL( posrecip(x1) ) = max{0, -2} |
POL( square(x1) ) = x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(100) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(101) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2ndsneg(x1, x2) ) = 0 |
POL( ACTIVE(x1) ) = 2x1 + 2 |
POL( 2ndspos(x1, x2) ) = max{0, -2} |
POL( from(x1) ) = 2x1 + 2 |
POL( times(x1, x2) ) = x1 + 1 |
POL( cons(x1, x2) ) = 2x1 |
POL( cons2(x1, x2) ) = x2 + 1 |
POL( rcons(x1, x2) ) = 2x1 + 2x2 |
POL( posrecip(x1) ) = max{0, -2} |
POL( negrecip(x1) ) = max{0, -2} |
POL( square(x1) ) = x1 + 2 |
POL( MARK(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(102) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(from(X)) → ACTIVE(from(mark(X)))
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(pi(X)) → ACTIVE(pi(mark(X)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(103) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(pi(X)) → ACTIVE(pi(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2ndsneg(x1, x2) ) = 1 |
POL( ACTIVE(x1) ) = max{0, 2x1 - 1} |
POL( 2ndspos(x1, x2) ) = 1 |
POL( cons2(x1, x2) ) = 2x2 |
POL( rcons(x1, x2) ) = x1 + x2 |
POL( posrecip(x1) ) = max{0, -2} |
POL( negrecip(x1) ) = 2x1 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
from(active(X)) → from(X)
from(mark(X)) → from(X)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
(104) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(s(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(rcons(X1, X2)) → MARK(X2)
ACTIVE(plus(0, Y)) → MARK(Y)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(105) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(s(X)) → MARK(X)
ACTIVE(plus(0, Y)) → MARK(Y)
ACTIVE(plus(s(X), Y)) → MARK(s(plus(X, Y)))
ACTIVE(times(s(X), Y)) → MARK(plus(Y, times(X, Y)))
MARK(plus(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(
x1) =
ACTIVE(
x1)
2ndspos(
x1,
x2) =
2ndspos(
x2)
s(
x1) =
s(
x1)
cons(
x1,
x2) =
x2
MARK(
x1) =
MARK(
x1)
cons2(
x1,
x2) =
x2
rcons(
x1,
x2) =
x2
posrecip(
x1) =
posrecip
2ndsneg(
x1,
x2) =
2ndsneg(
x2)
mark(
x1) =
x1
negrecip(
x1) =
negrecip
plus(
x1,
x2) =
plus(
x1,
x2)
0 =
0
times(
x1,
x2) =
times(
x1,
x2)
active(
x1) =
x1
from(
x1) =
from
pi(
x1) =
pi
square(
x1) =
square(
x1)
rnil =
rnil
Recursive path order with status [RPO].
Quasi-Precedence:
posrecip > [ACTIVE1, s1, MARK1, rnil]
negrecip > [ACTIVE1, s1, MARK1, rnil]
square1 > [0, times2, pi] > [2ndspos1, 2ndsneg1] > [ACTIVE1, s1, MARK1, rnil]
square1 > [0, times2, pi] > plus2 > [ACTIVE1, s1, MARK1, rnil]
square1 > [0, times2, pi] > from > [ACTIVE1, s1, MARK1, rnil]
Status:
ACTIVE1: multiset
2ndspos1: multiset
s1: [1]
MARK1: multiset
posrecip: multiset
2ndsneg1: multiset
negrecip: multiset
plus2: multiset
0: multiset
times2: [2,1]
from: []
pi: multiset
square1: multiset
rnil: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(106) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(rcons(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(107) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(times(X1, X2)) → ACTIVE(times(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2ndsneg(x1, x2) ) = 2 |
POL( 2ndspos(x1, x2) ) = 2 |
POL( ACTIVE(x1) ) = max{0, x1 - 1} |
POL( active(x1) ) = x1 + 1 |
POL( s(x1) ) = max{0, x1 - 2} |
POL( cons2(x1, x2) ) = x2 |
POL( rcons(x1, x2) ) = max{0, x2 - 1} |
POL( cons(x1, x2) ) = 2x1 + x2 + 1 |
POL( negrecip(x1) ) = 2x1 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
(108) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(rcons(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(109) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2ndsneg(x1, x2) ) = max{0, -2} |
POL( 2ndspos(x1, x2) ) = max{0, -2} |
POL( mark(x1) ) = 2x1 + 2 |
POL( cons2(x1, x2) ) = x2 + 2 |
POL( rcons(x1, x2) ) = x1 + x2 |
POL( posrecip(x1) ) = max{0, -2} |
POL( negrecip(x1) ) = max{0, -2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
(110) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(rcons(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(111) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(2ndspos(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(posrecip(Y), 2ndsneg(N, Z)))
ACTIVE(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → MARK(rcons(negrecip(Y), 2ndspos(N, Z)))
MARK(rcons(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(
x1) =
x1
2ndspos(
x1,
x2) =
2ndspos(
x1,
x2)
s(
x1) =
s(
x1)
cons(
x1,
x2) =
x2
MARK(
x1) =
x1
cons2(
x1,
x2) =
x2
rcons(
x1,
x2) =
rcons(
x1,
x2)
posrecip(
x1) =
posrecip
2ndsneg(
x1,
x2) =
2ndsneg(
x1,
x2)
mark(
x1) =
x1
negrecip(
x1) =
negrecip
active(
x1) =
x1
from(
x1) =
from
pi(
x1) =
pi(
x1)
0 =
0
plus(
x1,
x2) =
plus(
x1,
x2)
times(
x1,
x2) =
times(
x1,
x2)
square(
x1) =
square(
x1)
rnil =
rnil
Recursive path order with status [RPO].
Quasi-Precedence:
pi1 > [2ndspos2, 2ndsneg2] > s1 > rcons2
pi1 > [2ndspos2, 2ndsneg2] > posrecip
pi1 > [2ndspos2, 2ndsneg2] > negrecip
pi1 > [2ndspos2, 2ndsneg2] > rnil
pi1 > from > s1 > rcons2
pi1 > 0 > rnil
square1 > times2 > plus2 > s1 > rcons2
Status:
2ndspos2: [2,1]
s1: [1]
rcons2: [1,2]
posrecip: multiset
2ndsneg2: [2,1]
negrecip: multiset
from: []
pi1: [1]
0: multiset
plus2: [2,1]
times2: [2,1]
square1: multiset
rnil: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(112) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(113) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(2ndspos(s(N), cons(X, Z))) → MARK(2ndspos(s(N), cons2(X, Z)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(
x1) =
x1
2ndspos(
x1,
x2) =
2ndspos(
x2)
cons(
x1,
x2) =
cons
MARK(
x1) =
x1
cons2(
x1,
x2) =
cons2
mark(
x1) =
x1
2ndsneg(
x1,
x2) =
2ndsneg
s(
x1) =
s
active(
x1) =
x1
from(
x1) =
from
rcons(
x1,
x2) =
rcons
pi(
x1) =
pi
posrecip(
x1) =
posrecip
plus(
x1,
x2) =
x2
negrecip(
x1) =
negrecip
times(
x1,
x2) =
times
square(
x1) =
square
0 =
0
rnil =
rnil
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
rnil=5
rcons=6
square=4
posrecip=2
times=3
cons2=4
s=1
negrecip=2
2ndspos_1=7
pi=14
0=2
cons=5
2ndsneg=8
from=6
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(114) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(115) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(2ndspos(X1, X2)) → ACTIVE(2ndspos(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2ndsneg(x1, x2) ) = 2x1 |
POL( ACTIVE(x1) ) = max{0, 2x1 - 2} |
POL( 2ndspos(x1, x2) ) = 2 |
POL( cons(x1, x2) ) = max{0, -1} |
POL( s(x1) ) = max{0, -2} |
POL( cons2(x1, x2) ) = x1 + 2x2 + 2 |
POL( plus(x1, x2) ) = 2x2 |
POL( times(x1, x2) ) = max{0, -2} |
POL( square(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(116) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(117) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(2ndsneg(s(N), cons(X, Z))) → MARK(2ndsneg(s(N), cons2(X, Z)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(
x1) =
x1
2ndsneg(
x1,
x2) =
2ndsneg(
x2)
cons(
x1,
x2) =
cons
MARK(
x1) =
x1
cons2(
x1,
x2) =
cons2
mark(
x1) =
x1
s(
x1) =
s
active(
x1) =
x1
from(
x1) =
from
2ndspos(
x1,
x2) =
2ndspos
rcons(
x1,
x2) =
rcons
pi(
x1) =
pi
posrecip(
x1) =
posrecip
plus(
x1,
x2) =
x2
negrecip(
x1) =
negrecip
times(
x1,
x2) =
times
square(
x1) =
square
0 =
0
rnil =
rnil
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
rnil=6
rcons=8
square=4
posrecip=2
times=3
cons2=5
s=1
negrecip=2
2ndspos=11
pi=12
0=2
cons=6
2ndsneg_1=7
from=7
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
mark(from(X)) → active(from(mark(X)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
mark(s(X)) → active(s(mark(X)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
active(pi(X)) → mark(2ndspos(X, from(0)))
mark(posrecip(X)) → active(posrecip(mark(X)))
active(plus(0, Y)) → mark(Y)
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
mark(negrecip(X)) → active(negrecip(mark(X)))
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
mark(pi(X)) → active(pi(mark(X)))
active(square(X)) → mark(times(X, X))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
mark(0) → active(0)
mark(rnil) → active(rnil)
from(active(X)) → from(X)
from(mark(X)) → from(X)
active(2ndspos(0, Z)) → mark(rnil)
active(2ndsneg(0, Z)) → mark(rnil)
active(times(0, Y)) → mark(0)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
posrecip(active(X)) → posrecip(X)
posrecip(mark(X)) → posrecip(X)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
negrecip(active(X)) → negrecip(X)
negrecip(mark(X)) → negrecip(X)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
pi(active(X)) → pi(X)
pi(mark(X)) → pi(X)
square(active(X)) → square(X)
square(mark(X)) → square(X)
(118) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2ndsneg(X1, X2)) → ACTIVE(2ndsneg(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(2ndspos(0, Z)) → mark(rnil)
active(2ndspos(s(N), cons(X, Z))) → mark(2ndspos(s(N), cons2(X, Z)))
active(2ndspos(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(posrecip(Y), 2ndsneg(N, Z)))
active(2ndsneg(0, Z)) → mark(rnil)
active(2ndsneg(s(N), cons(X, Z))) → mark(2ndsneg(s(N), cons2(X, Z)))
active(2ndsneg(s(N), cons2(X, cons(Y, Z)))) → mark(rcons(negrecip(Y), 2ndspos(N, Z)))
active(pi(X)) → mark(2ndspos(X, from(0)))
active(plus(0, Y)) → mark(Y)
active(plus(s(X), Y)) → mark(s(plus(X, Y)))
active(times(0, Y)) → mark(0)
active(times(s(X), Y)) → mark(plus(Y, times(X, Y)))
active(square(X)) → mark(times(X, X))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(2ndspos(X1, X2)) → active(2ndspos(mark(X1), mark(X2)))
mark(0) → active(0)
mark(rnil) → active(rnil)
mark(cons2(X1, X2)) → active(cons2(X1, mark(X2)))
mark(rcons(X1, X2)) → active(rcons(mark(X1), mark(X2)))
mark(posrecip(X)) → active(posrecip(mark(X)))
mark(2ndsneg(X1, X2)) → active(2ndsneg(mark(X1), mark(X2)))
mark(negrecip(X)) → active(negrecip(mark(X)))
mark(pi(X)) → active(pi(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(times(X1, X2)) → active(times(mark(X1), mark(X2)))
mark(square(X)) → active(square(mark(X)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
2ndspos(mark(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, mark(X2)) → 2ndspos(X1, X2)
2ndspos(active(X1), X2) → 2ndspos(X1, X2)
2ndspos(X1, active(X2)) → 2ndspos(X1, X2)
cons2(mark(X1), X2) → cons2(X1, X2)
cons2(X1, mark(X2)) → cons2(X1, X2)
cons2(active(X1), X2) → cons2(X1, X2)
cons2(X1, active(X2)) → cons2(X1, X2)
rcons(mark(X1), X2) → rcons(X1, X2)
rcons(X1, mark(X2)) → rcons(X1, X2)
rcons(active(X1), X2) → rcons(X1, X2)
rcons(X1, active(X2)) → rcons(X1, X2)
posrecip(mark(X)) → posrecip(X)
posrecip(active(X)) → posrecip(X)
2ndsneg(mark(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, mark(X2)) → 2ndsneg(X1, X2)
2ndsneg(active(X1), X2) → 2ndsneg(X1, X2)
2ndsneg(X1, active(X2)) → 2ndsneg(X1, X2)
negrecip(mark(X)) → negrecip(X)
negrecip(active(X)) → negrecip(X)
pi(mark(X)) → pi(X)
pi(active(X)) → pi(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
times(mark(X1), X2) → times(X1, X2)
times(X1, mark(X2)) → times(X1, X2)
times(active(X1), X2) → times(X1, X2)
times(X1, active(X2)) → times(X1, X2)
square(mark(X)) → square(X)
square(active(X)) → square(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(119) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(120) TRUE