NO Termination w.r.t. Q proof of Transformed_CSR_04_Ex9_Luc04_iGM.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
ACTIVE(f(a, b, X)) → F(X, X, X)
ACTIVE(c) → MARK(a)
ACTIVE(c) → MARK(b)
MARK(f(X1, X2, X3)) → ACTIVE(f(mark(X1), X2, mark(X3)))
MARK(f(X1, X2, X3)) → F(mark(X1), X2, mark(X3))
MARK(f(X1, X2, X3)) → MARK(X1)
MARK(f(X1, X2, X3)) → MARK(X3)
MARK(a) → ACTIVE(a)
MARK(b) → ACTIVE(b)
MARK(c) → ACTIVE(c)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)

The TRS R consists of the following rules:

active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 7 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X1, mark(X2), X3) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)

The TRS R consists of the following rules:

active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X1, mark(X2), X3) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • F(X1, mark(X2), X3) → F(X1, X2, X3)
    The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3

  • F(mark(X1), X2, X3) → F(X1, X2, X3)
    The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3

  • F(X1, X2, mark(X3)) → F(X1, X2, X3)
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3

  • F(active(X1), X2, X3) → F(X1, X2, X3)
    The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3

  • F(X1, active(X2), X3) → F(X1, X2, X3)
    The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3

  • F(X1, X2, active(X3)) → F(X1, X2, X3)
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3

(9) YES

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2, X3)) → ACTIVE(f(mark(X1), X2, mark(X3)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(X1, X2, X3)) → MARK(X1)
MARK(f(X1, X2, X3)) → MARK(X3)

The TRS R consists of the following rules:

active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(f(X1, X2, X3)) → MARK(X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 2A + 0A·x1

POL(f(x1, x2, x3)) = 3A + 0A·x1 + 0A·x2 + 3A·x3

POL(ACTIVE(x1)) = 3A + 0A·x1

POL(mark(x1)) = -I + 0A·x1

POL(a) = 3A

POL(b) = 1A

POL(active(x1)) = -I + 0A·x1

POL(c) = 3A

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
active(f(a, b, X)) → mark(f(X, X, X))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
active(c) → mark(a)
active(c) → mark(b)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2, X3)) → ACTIVE(f(mark(X1), X2, mark(X3)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(X1, X2, X3)) → MARK(X1)

The TRS R consists of the following rules:

active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(f(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 4A + 5A·x1

POL(f(x1, x2, x3)) = 0A + 1A·x1 + -I·x2 + 2A·x3

POL(ACTIVE(x1)) = 4A + 5A·x1

POL(mark(x1)) = -I + 0A·x1

POL(a) = 0A

POL(b) = 3A

POL(active(x1)) = -I + 0A·x1

POL(c) = 3A

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
active(f(a, b, X)) → mark(f(X, X, X))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
active(c) → mark(a)
active(c) → mark(b)

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X1, X2, X3)) → ACTIVE(f(mark(X1), X2, mark(X3)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))

The TRS R consists of the following rules:

active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule MARK(f(X1, X2, X3)) → ACTIVE(f(mark(X1), X2, mark(X3))) at position [0] we obtained the following new rules [LPAR04]:

MARK(f(x0, x1, y2)) → ACTIVE(f(x0, x1, mark(y2))) → MARK(f(x0, x1, y2)) → ACTIVE(f(x0, x1, mark(y2)))
MARK(f(y0, mark(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2))) → MARK(f(y0, mark(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2)) → MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2))
MARK(f(y0, active(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2))) → MARK(f(y0, active(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(f(x0, x1, x2), y1, y2)) → ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2))) → MARK(f(f(x0, x1, x2), y1, y2)) → ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2)))
MARK(f(a, y1, y2)) → ACTIVE(f(active(a), y1, mark(y2))) → MARK(f(a, y1, y2)) → ACTIVE(f(active(a), y1, mark(y2)))
MARK(f(b, y1, y2)) → ACTIVE(f(active(b), y1, mark(y2))) → MARK(f(b, y1, y2)) → ACTIVE(f(active(b), y1, mark(y2)))
MARK(f(c, y1, y2)) → ACTIVE(f(active(c), y1, mark(y2))) → MARK(f(c, y1, y2)) → ACTIVE(f(active(c), y1, mark(y2)))
MARK(f(y0, y1, f(x0, x1, x2))) → ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2))))) → MARK(f(y0, y1, f(x0, x1, x2))) → ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2)))))
MARK(f(y0, y1, a)) → ACTIVE(f(mark(y0), y1, active(a))) → MARK(f(y0, y1, a)) → ACTIVE(f(mark(y0), y1, active(a)))
MARK(f(y0, y1, b)) → ACTIVE(f(mark(y0), y1, active(b))) → MARK(f(y0, y1, b)) → ACTIVE(f(mark(y0), y1, active(b)))
MARK(f(y0, y1, c)) → ACTIVE(f(mark(y0), y1, active(c))) → MARK(f(y0, y1, c)) → ACTIVE(f(mark(y0), y1, active(c)))

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(x0, x1, y2)) → ACTIVE(f(x0, x1, mark(y2)))
MARK(f(y0, mark(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2))
MARK(f(y0, active(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(f(x0, x1, x2), y1, y2)) → ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2)))
MARK(f(a, y1, y2)) → ACTIVE(f(active(a), y1, mark(y2)))
MARK(f(b, y1, y2)) → ACTIVE(f(active(b), y1, mark(y2)))
MARK(f(c, y1, y2)) → ACTIVE(f(active(c), y1, mark(y2)))
MARK(f(y0, y1, f(x0, x1, x2))) → ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2)))))
MARK(f(y0, y1, a)) → ACTIVE(f(mark(y0), y1, active(a)))
MARK(f(y0, y1, b)) → ACTIVE(f(mark(y0), y1, active(b)))
MARK(f(y0, y1, c)) → ACTIVE(f(mark(y0), y1, active(c)))

The TRS R consists of the following rules:

active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(f(y0, y1, b)) → ACTIVE(f(mark(y0), y1, active(b)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(ACTIVE(x1)) = 1A +
[-I,1A,2A]
·x1

POL(f(x1, x2, x3)) =
/2A\
|1A|
\0A/
+
/-I0A3A\
|-I-I-I|
\-I-I0A/
·x1 +
/-I-I-I\
|-I-I-I|
\-I-I-I/
·x2 +
/-I-I-I\
|-I2A3A|
\-I-I3A/
·x3

POL(a) =
/1A\
|-I|
\2A/

POL(b) =
/1A\
|-I|
\-I/

POL(MARK(x1)) = 3A +
[0A,1A,2A]
·x1

POL(mark(x1)) =
/1A\
|-I|
\-I/
+
/3A3A3A\
|-I0A0A|
\-I-I0A/
·x1

POL(active(x1)) =
/0A\
|-I|
\-I/
+
/3A3A1A\
|-I0A0A|
\-I-I0A/
·x1

POL(c) =
/0A\
|3A|
\2A/

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

f(X1, mark(X2), X3) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
active(f(a, b, X)) → mark(f(X, X, X))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
active(c) → mark(a)
active(c) → mark(b)

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(x0, x1, y2)) → ACTIVE(f(x0, x1, mark(y2)))
MARK(f(y0, mark(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2))
MARK(f(y0, active(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(f(x0, x1, x2), y1, y2)) → ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2)))
MARK(f(a, y1, y2)) → ACTIVE(f(active(a), y1, mark(y2)))
MARK(f(b, y1, y2)) → ACTIVE(f(active(b), y1, mark(y2)))
MARK(f(c, y1, y2)) → ACTIVE(f(active(c), y1, mark(y2)))
MARK(f(y0, y1, f(x0, x1, x2))) → ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2)))))
MARK(f(y0, y1, a)) → ACTIVE(f(mark(y0), y1, active(a)))
MARK(f(y0, y1, c)) → ACTIVE(f(mark(y0), y1, active(c)))

The TRS R consists of the following rules:

active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(f(y0, y1, a)) → ACTIVE(f(mark(y0), y1, active(a)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(ACTIVE(x1)) = 3A +
[-I,-I,1A]
·x1

POL(f(x1, x2, x3)) =
/3A\
|3A|
\-I/
+
/-I-I-I\
|-I-I-I|
\-I-I-I/
·x1 +
/-I0A1A\
|-I0A-I|
\-I1A2A/
·x2 +
/-I0A1A\
|-I0A1A|
\-I2A3A/
·x3

POL(a) =
/2A\
|-I|
\-I/

POL(b) =
/0A\
|3A|
\3A/

POL(MARK(x1)) = 0A +
[3A,-I,-I]
·x1

POL(mark(x1)) =
/3A\
|0A|
\-I/
+
/-I-I0A\
|-I0A1A|
\-I-I-I/
·x1

POL(active(x1)) =
/0A\
|-I|
\-I/
+
/0A-I0A\
|-I0A1A|
\-I-I-I/
·x1

POL(c) =
/3A\
|3A|
\3A/

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

f(X1, mark(X2), X3) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
active(f(a, b, X)) → mark(f(X, X, X))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
active(c) → mark(a)
active(c) → mark(b)

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(x0, x1, y2)) → ACTIVE(f(x0, x1, mark(y2)))
MARK(f(y0, mark(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2))
MARK(f(y0, active(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(f(x0, x1, x2), y1, y2)) → ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2)))
MARK(f(a, y1, y2)) → ACTIVE(f(active(a), y1, mark(y2)))
MARK(f(b, y1, y2)) → ACTIVE(f(active(b), y1, mark(y2)))
MARK(f(c, y1, y2)) → ACTIVE(f(active(c), y1, mark(y2)))
MARK(f(y0, y1, f(x0, x1, x2))) → ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2)))))
MARK(f(y0, y1, c)) → ACTIVE(f(mark(y0), y1, active(c)))

The TRS R consists of the following rules:

active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(f(y0, y1, f(x0, x1, x2))) → ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2)))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(ACTIVE(x1)) = 0A +
[-I,3A,2A]
·x1

POL(f(x1, x2, x3)) =
/0A\
|-I|
\3A/
+
/-I-I-I\
|1A-I-I|
\2A-I-I/
·x1 +
/-I-I-I\
|-I-I-I|
\-I-I-I/
·x2 +
/-I-I-I\
|2A-I-I|
\2A-I-I/
·x3

POL(a) =
/2A\
|-I|
\-I/

POL(b) =
/0A\
|-I|
\0A/

POL(MARK(x1)) = 0A +
[-I,3A,3A]
·x1

POL(mark(x1)) =
/-I\
|-I|
\2A/
+
/0A-I-I\
|-I1A-I|
\-I0A0A/
·x1

POL(active(x1)) =
/-I\
|-I|
\2A/
+
/0A-I-I\
|-I1A-I|
\-I-I0A/
·x1

POL(c) =
/2A\
|-I|
\-I/

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

f(X1, mark(X2), X3) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
active(f(a, b, X)) → mark(f(X, X, X))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
active(c) → mark(a)
active(c) → mark(b)

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(x0, x1, y2)) → ACTIVE(f(x0, x1, mark(y2)))
MARK(f(y0, mark(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2))
MARK(f(y0, active(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(f(x0, x1, x2), y1, y2)) → ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2)))
MARK(f(a, y1, y2)) → ACTIVE(f(active(a), y1, mark(y2)))
MARK(f(b, y1, y2)) → ACTIVE(f(active(b), y1, mark(y2)))
MARK(f(c, y1, y2)) → ACTIVE(f(active(c), y1, mark(y2)))
MARK(f(y0, y1, c)) → ACTIVE(f(mark(y0), y1, active(c)))

The TRS R consists of the following rules:

active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) NonTerminationLoopProof (COMPLETE transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = MARK(f(active(c), active(c), X3')) evaluates to t =MARK(f(X3', X3', X3'))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [X3' / active(c)]




Rewriting sequence

MARK(f(active(c), active(c), active(c)))MARK(f(active(c), mark(b), active(c)))
with rule active(c) → mark(b) at position [0,1] and matcher [ ]

MARK(f(active(c), mark(b), active(c)))MARK(f(mark(a), mark(b), active(c)))
with rule active(c) → mark(a) at position [0,0] and matcher [ ]

MARK(f(mark(a), mark(b), active(c)))MARK(f(mark(a), b, active(c)))
with rule f(X1, mark(X2), X3') → f(X1, X2, X3') at position [0] and matcher [X1 / mark(a), X2 / b, X3' / active(c)]

MARK(f(mark(a), b, active(c)))MARK(f(a, b, active(c)))
with rule f(mark(X1), X2, X3) → f(X1, X2, X3) at position [0] and matcher [X1 / a, X2 / b, X3 / active(c)]

MARK(f(a, b, active(c)))ACTIVE(f(mark(a), b, active(c)))
with rule MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2)) at position [] and matcher [y0 / a, x1 / b, x2 / active(c)]

ACTIVE(f(mark(a), b, active(c)))ACTIVE(f(a, b, active(c)))
with rule f(mark(X1), X2, X3) → f(X1, X2, X3) at position [0] and matcher [X1 / a, X2 / b, X3 / active(c)]

ACTIVE(f(a, b, active(c)))MARK(f(active(c), active(c), active(c)))
with rule ACTIVE(f(a, b, X)) → MARK(f(X, X, X))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(24) NO