(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
ACTIVE(f(a, b, X)) → F(X, X, X)
ACTIVE(c) → MARK(a)
ACTIVE(c) → MARK(b)
MARK(f(X1, X2, X3)) → ACTIVE(f(mark(X1), X2, mark(X3)))
MARK(f(X1, X2, X3)) → F(mark(X1), X2, mark(X3))
MARK(f(X1, X2, X3)) → MARK(X1)
MARK(f(X1, X2, X3)) → MARK(X3)
MARK(a) → ACTIVE(a)
MARK(b) → ACTIVE(b)
MARK(c) → ACTIVE(c)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 7 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- F(X1, mark(X2), X3) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3
- F(mark(X1), X2, X3) → F(X1, X2, X3)
The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3
- F(X1, X2, mark(X3)) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3
- F(active(X1), X2, X3) → F(X1, X2, X3)
The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3
- F(X1, active(X2), X3) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3
- F(X1, X2, active(X3)) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(f(X1, X2, X3)) → ACTIVE(f(mark(X1), X2, mark(X3)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(X1, X2, X3)) → MARK(X1)
MARK(f(X1, X2, X3)) → MARK(X3)
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(f(X1, X2, X3)) → MARK(X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 2A | + | 0A | · | x1 |
POL(f(x1, x2, x3)) = | 3A | + | 0A | · | x1 | + | 0A | · | x2 | + | 3A | · | x3 |
POL(ACTIVE(x1)) = | 3A | + | 0A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
active(f(a, b, X)) → mark(f(X, X, X))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
active(c) → mark(a)
active(c) → mark(b)
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(f(X1, X2, X3)) → ACTIVE(f(mark(X1), X2, mark(X3)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(X1, X2, X3)) → MARK(X1)
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(f(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 4A | + | 5A | · | x1 |
POL(f(x1, x2, x3)) = | 0A | + | 1A | · | x1 | + | -I | · | x2 | + | 2A | · | x3 |
POL(ACTIVE(x1)) = | 4A | + | 5A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
active(f(a, b, X)) → mark(f(X, X, X))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
active(c) → mark(a)
active(c) → mark(b)
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(f(X1, X2, X3)) → ACTIVE(f(mark(X1), X2, mark(X3)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
MARK(
f(
X1,
X2,
X3)) →
ACTIVE(
f(
mark(
X1),
X2,
mark(
X3))) at position [0] we obtained the following new rules [LPAR04]:
MARK(f(x0, x1, y2)) → ACTIVE(f(x0, x1, mark(y2))) → MARK(f(x0, x1, y2)) → ACTIVE(f(x0, x1, mark(y2)))
MARK(f(y0, mark(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2))) → MARK(f(y0, mark(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2)) → MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2))
MARK(f(y0, active(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2))) → MARK(f(y0, active(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(f(x0, x1, x2), y1, y2)) → ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2))) → MARK(f(f(x0, x1, x2), y1, y2)) → ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2)))
MARK(f(a, y1, y2)) → ACTIVE(f(active(a), y1, mark(y2))) → MARK(f(a, y1, y2)) → ACTIVE(f(active(a), y1, mark(y2)))
MARK(f(b, y1, y2)) → ACTIVE(f(active(b), y1, mark(y2))) → MARK(f(b, y1, y2)) → ACTIVE(f(active(b), y1, mark(y2)))
MARK(f(c, y1, y2)) → ACTIVE(f(active(c), y1, mark(y2))) → MARK(f(c, y1, y2)) → ACTIVE(f(active(c), y1, mark(y2)))
MARK(f(y0, y1, f(x0, x1, x2))) → ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2))))) → MARK(f(y0, y1, f(x0, x1, x2))) → ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2)))))
MARK(f(y0, y1, a)) → ACTIVE(f(mark(y0), y1, active(a))) → MARK(f(y0, y1, a)) → ACTIVE(f(mark(y0), y1, active(a)))
MARK(f(y0, y1, b)) → ACTIVE(f(mark(y0), y1, active(b))) → MARK(f(y0, y1, b)) → ACTIVE(f(mark(y0), y1, active(b)))
MARK(f(y0, y1, c)) → ACTIVE(f(mark(y0), y1, active(c))) → MARK(f(y0, y1, c)) → ACTIVE(f(mark(y0), y1, active(c)))
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(x0, x1, y2)) → ACTIVE(f(x0, x1, mark(y2)))
MARK(f(y0, mark(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2))
MARK(f(y0, active(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(f(x0, x1, x2), y1, y2)) → ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2)))
MARK(f(a, y1, y2)) → ACTIVE(f(active(a), y1, mark(y2)))
MARK(f(b, y1, y2)) → ACTIVE(f(active(b), y1, mark(y2)))
MARK(f(c, y1, y2)) → ACTIVE(f(active(c), y1, mark(y2)))
MARK(f(y0, y1, f(x0, x1, x2))) → ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2)))))
MARK(f(y0, y1, a)) → ACTIVE(f(mark(y0), y1, active(a)))
MARK(f(y0, y1, b)) → ACTIVE(f(mark(y0), y1, active(b)))
MARK(f(y0, y1, c)) → ACTIVE(f(mark(y0), y1, active(c)))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(f(y0, y1, b)) → ACTIVE(f(mark(y0), y1, active(b)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVE(x1)) = | 1A | + | | · | x1 |
POL(f(x1, x2, x3)) = | | + | / | -I | 0A | 3A | \ |
| | -I | -I | -I | | |
\ | -I | -I | 0A | / |
| · | x1 | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | -I | -I | -I | / |
| · | x2 | + | / | -I | -I | -I | \ |
| | -I | 2A | 3A | | |
\ | -I | -I | 3A | / |
| · | x3 |
POL(mark(x1)) = | | + | / | 3A | 3A | 3A | \ |
| | -I | 0A | 0A | | |
\ | -I | -I | 0A | / |
| · | x1 |
POL(active(x1)) = | | + | / | 3A | 3A | 1A | \ |
| | -I | 0A | 0A | | |
\ | -I | -I | 0A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
active(f(a, b, X)) → mark(f(X, X, X))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
active(c) → mark(a)
active(c) → mark(b)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(x0, x1, y2)) → ACTIVE(f(x0, x1, mark(y2)))
MARK(f(y0, mark(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2))
MARK(f(y0, active(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(f(x0, x1, x2), y1, y2)) → ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2)))
MARK(f(a, y1, y2)) → ACTIVE(f(active(a), y1, mark(y2)))
MARK(f(b, y1, y2)) → ACTIVE(f(active(b), y1, mark(y2)))
MARK(f(c, y1, y2)) → ACTIVE(f(active(c), y1, mark(y2)))
MARK(f(y0, y1, f(x0, x1, x2))) → ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2)))))
MARK(f(y0, y1, a)) → ACTIVE(f(mark(y0), y1, active(a)))
MARK(f(y0, y1, c)) → ACTIVE(f(mark(y0), y1, active(c)))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(f(y0, y1, a)) → ACTIVE(f(mark(y0), y1, active(a)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVE(x1)) = | 3A | + | | · | x1 |
POL(f(x1, x2, x3)) = | | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | -I | -I | -I | / |
| · | x1 | + | / | -I | 0A | 1A | \ |
| | -I | 0A | -I | | |
\ | -I | 1A | 2A | / |
| · | x2 | + | / | -I | 0A | 1A | \ |
| | -I | 0A | 1A | | |
\ | -I | 2A | 3A | / |
| · | x3 |
POL(mark(x1)) = | | + | / | -I | -I | 0A | \ |
| | -I | 0A | 1A | | |
\ | -I | -I | -I | / |
| · | x1 |
POL(active(x1)) = | | + | / | 0A | -I | 0A | \ |
| | -I | 0A | 1A | | |
\ | -I | -I | -I | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
active(f(a, b, X)) → mark(f(X, X, X))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
active(c) → mark(a)
active(c) → mark(b)
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(x0, x1, y2)) → ACTIVE(f(x0, x1, mark(y2)))
MARK(f(y0, mark(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2))
MARK(f(y0, active(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(f(x0, x1, x2), y1, y2)) → ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2)))
MARK(f(a, y1, y2)) → ACTIVE(f(active(a), y1, mark(y2)))
MARK(f(b, y1, y2)) → ACTIVE(f(active(b), y1, mark(y2)))
MARK(f(c, y1, y2)) → ACTIVE(f(active(c), y1, mark(y2)))
MARK(f(y0, y1, f(x0, x1, x2))) → ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2)))))
MARK(f(y0, y1, c)) → ACTIVE(f(mark(y0), y1, active(c)))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(f(y0, y1, f(x0, x1, x2))) → ACTIVE(f(mark(y0), y1, active(f(mark(x0), x1, mark(x2)))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVE(x1)) = | 0A | + | | · | x1 |
POL(f(x1, x2, x3)) = | | + | / | -I | -I | -I | \ |
| | 1A | -I | -I | | |
\ | 2A | -I | -I | / |
| · | x1 | + | / | -I | -I | -I | \ |
| | -I | -I | -I | | |
\ | -I | -I | -I | / |
| · | x2 | + | / | -I | -I | -I | \ |
| | 2A | -I | -I | | |
\ | 2A | -I | -I | / |
| · | x3 |
POL(mark(x1)) = | | + | / | 0A | -I | -I | \ |
| | -I | 1A | -I | | |
\ | -I | 0A | 0A | / |
| · | x1 |
POL(active(x1)) = | | + | / | 0A | -I | -I | \ |
| | -I | 1A | -I | | |
\ | -I | -I | 0A | / |
| · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
active(f(a, b, X)) → mark(f(X, X, X))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
active(c) → mark(a)
active(c) → mark(b)
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(x0, x1, y2)) → ACTIVE(f(x0, x1, mark(y2)))
MARK(f(y0, mark(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(y0, x1, x2)) → ACTIVE(f(mark(y0), x1, x2))
MARK(f(y0, active(x1), y2)) → ACTIVE(f(mark(y0), x1, mark(y2)))
MARK(f(f(x0, x1, x2), y1, y2)) → ACTIVE(f(active(f(mark(x0), x1, mark(x2))), y1, mark(y2)))
MARK(f(a, y1, y2)) → ACTIVE(f(active(a), y1, mark(y2)))
MARK(f(b, y1, y2)) → ACTIVE(f(active(b), y1, mark(y2)))
MARK(f(c, y1, y2)) → ACTIVE(f(active(c), y1, mark(y2)))
MARK(f(y0, y1, c)) → ACTIVE(f(mark(y0), y1, active(c)))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(mark(X1), X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) NonTerminationLoopProof (COMPLETE transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
MARK(
f(
active(
c),
active(
c),
X3')) evaluates to t =
MARK(
f(
X3',
X3',
X3'))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [X3' / active(c)]
Rewriting sequenceMARK(f(active(c), active(c), active(c))) →
MARK(
f(
active(
c),
mark(
b),
active(
c)))
with rule
active(
c) →
mark(
b) at position [0,1] and matcher [ ]
MARK(f(active(c), mark(b), active(c))) →
MARK(
f(
mark(
a),
mark(
b),
active(
c)))
with rule
active(
c) →
mark(
a) at position [0,0] and matcher [ ]
MARK(f(mark(a), mark(b), active(c))) →
MARK(
f(
mark(
a),
b,
active(
c)))
with rule
f(
X1,
mark(
X2),
X3') →
f(
X1,
X2,
X3') at position [0] and matcher [
X1 /
mark(
a),
X2 /
b,
X3' /
active(
c)]
MARK(f(mark(a), b, active(c))) →
MARK(
f(
a,
b,
active(
c)))
with rule
f(
mark(
X1),
X2,
X3) →
f(
X1,
X2,
X3) at position [0] and matcher [
X1 /
a,
X2 /
b,
X3 /
active(
c)]
MARK(f(a, b, active(c))) →
ACTIVE(
f(
mark(
a),
b,
active(
c)))
with rule
MARK(
f(
y0,
x1,
x2)) →
ACTIVE(
f(
mark(
y0),
x1,
x2)) at position [] and matcher [
y0 /
a,
x1 /
b,
x2 /
active(
c)]
ACTIVE(f(mark(a), b, active(c))) →
ACTIVE(
f(
a,
b,
active(
c)))
with rule
f(
mark(
X1),
X2,
X3) →
f(
X1,
X2,
X3) at position [0] and matcher [
X1 /
a,
X2 /
b,
X3 /
active(
c)]
ACTIVE(f(a, b, active(c))) →
MARK(
f(
active(
c),
active(
c),
active(
c)))
with rule
ACTIVE(
f(
a,
b,
X)) →
MARK(
f(
X,
X,
X))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(24) NO