YES Termination w.r.t. Q proof of Transformed_CSR_04_Ex9_BLR02_L.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

filter(cons(X), 0, M) → cons(0)
filter(cons(X), s(N), M) → cons(X)
sieve(cons(0)) → cons(0)
sieve(cons(s(N))) → cons(s(N))
nats(N) → cons(N)
zprimessieve(nats(s(s(0))))

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Knuth-Bendix order [KBO] with precedence:
sieve1 > zprimes > s1 > cons1 > nats1 > 0 > filter3

and weight map:

0=3
zprimes=8
cons_1=1
s_1=1
sieve_1=0
nats_1=2
filter_3=0

The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

filter(cons(X), 0, M) → cons(0)
filter(cons(X), s(N), M) → cons(X)
sieve(cons(0)) → cons(0)
sieve(cons(s(N))) → cons(s(N))
nats(N) → cons(N)
zprimessieve(nats(s(s(0))))


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) YES