(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(n__s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
s(X) → n__s(X)
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)
ZPRIMES → SIEVE(nats(s(s(0))))
ZPRIMES → NATS(s(s(0)))
ZPRIMES → S(s(0))
ZPRIMES → S(0)
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(activate(X1), activate(X2), activate(X3))
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X1)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X2)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X3)
ACTIVATE(n__sieve(X)) → SIEVE(activate(X))
ACTIVATE(n__sieve(X)) → ACTIVATE(X)
ACTIVATE(n__nats(X)) → NATS(activate(X))
ACTIVATE(n__nats(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(n__s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
s(X) → n__s(X)
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(activate(X1), activate(X2), activate(X3))
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X1)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X2)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X3)
ACTIVATE(n__sieve(X)) → SIEVE(activate(X))
SIEVE(cons(0, Y)) → ACTIVATE(Y)
ACTIVATE(n__sieve(X)) → ACTIVATE(X)
ACTIVATE(n__nats(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
The TRS R consists of the following rules:
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(n__s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
s(X) → n__s(X)
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__nats(X)) → ACTIVATE(X)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVATE(x1)) = | 2A | + | 0A | · | x1 |
POL(n__filter(x1, x2, x3)) = | 1A | + | 0A | · | x1 | + | 1A | · | x2 | + | 1A | · | x3 |
POL(FILTER(x1, x2, x3)) = | 2A | + | 0A | · | x1 | + | 1A | · | x2 | + | -I | · | x3 |
POL(activate(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | 0A | + | 1A | · | x1 | + | 0A | · | x2 |
POL(n__sieve(x1)) = | 2A | + | 2A | · | x1 |
POL(SIEVE(x1)) = | 2A | + | 1A | · | x1 |
POL(n__nats(x1)) = | 5A | + | 1A | · | x1 |
POL(n__s(x1)) = | 4A | + | 0A | · | x1 |
POL(filter(x1, x2, x3)) = | 1A | + | 0A | · | x1 | + | 1A | · | x2 | + | 1A | · | x3 |
POL(sieve(x1)) = | 2A | + | 2A | · | x1 |
POL(nats(x1)) = | 5A | + | 1A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(N) → cons(N, n__nats(n__s(N)))
nats(X) → n__nats(X)
s(X) → n__s(X)
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(activate(X1), activate(X2), activate(X3))
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X1)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X2)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X3)
ACTIVATE(n__sieve(X)) → SIEVE(activate(X))
SIEVE(cons(0, Y)) → ACTIVATE(Y)
ACTIVATE(n__sieve(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
The TRS R consists of the following rules:
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(n__s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
s(X) → n__s(X)
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__sieve(X)) → SIEVE(activate(X))
ACTIVATE(n__sieve(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVATE(x1)) = | 5A | + | 2A | · | x1 |
POL(n__filter(x1, x2, x3)) = | 1A | + | 0A | · | x1 | + | 2A | · | x2 | + | 2A | · | x3 |
POL(FILTER(x1, x2, x3)) = | 5A | + | 2A | · | x1 | + | -I | · | x2 | + | -I | · | x3 |
POL(activate(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | -I | + | 2A | · | x1 | + | 0A | · | x2 |
POL(n__sieve(x1)) = | 5A | + | 4A | · | x1 |
POL(SIEVE(x1)) = | 5A | + | 2A | · | x1 |
POL(n__s(x1)) = | -I | + | 0A | · | x1 |
POL(filter(x1, x2, x3)) = | 1A | + | 0A | · | x1 | + | 2A | · | x2 | + | 2A | · | x3 |
POL(sieve(x1)) = | 5A | + | 4A | · | x1 |
POL(n__nats(x1)) = | -I | + | 3A | · | x1 |
POL(nats(x1)) = | -I | + | 3A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(N) → cons(N, n__nats(n__s(N)))
nats(X) → n__nats(X)
s(X) → n__s(X)
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(activate(X1), activate(X2), activate(X3))
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X1)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X2)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X3)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
ACTIVATE(n__s(X)) → ACTIVATE(X)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
The TRS R consists of the following rules:
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(n__s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
s(X) → n__s(X)
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(activate(X1), activate(X2), activate(X3))
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X1)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X2)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X3)
ACTIVATE(n__s(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(n__s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
s(X) → n__s(X)
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(activate(X1), activate(X2), activate(X3))
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X1)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X2)
ACTIVATE(n__filter(X1, X2, X3)) → ACTIVATE(X3)
ACTIVATE(n__s(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO,RATPOLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = [1/2]x1
POL(FILTER(x1, x2, x3)) = x1 + [1/4]x2 + [1/4]x3
POL(activate(x1)) = x1
POL(cons(x1, x2)) = [1/2]x2
POL(filter(x1, x2, x3)) = [1] + [2]x1 + x2 + x3
POL(n__filter(x1, x2, x3)) = [1] + [2]x1 + x2 + x3
POL(n__nats(x1)) = 0
POL(n__s(x1)) = [1/4] + x1
POL(n__sieve(x1)) = 0
POL(nats(x1)) = 0
POL(s(x1)) = [1/4] + x1
POL(sieve(x1)) = 0
The value of delta used in the strict ordering is 1/16.
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(N) → cons(N, n__nats(n__s(N)))
nats(X) → n__nats(X)
s(X) → n__s(X)
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
The TRS R consists of the following rules:
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(n__filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(n__s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
s(X) → n__s(X)
activate(n__filter(X1, X2, X3)) → filter(activate(X1), activate(X2), activate(X3))
activate(n__sieve(X)) → sieve(activate(X))
activate(n__nats(X)) → nats(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(14) TRUE