YES
0 QTRS
↳1 QTRSToCSRProof (⇔, 0 ms)
↳2 CSR
↳3 CSRRRRProof (⇔, 53 ms)
↳4 CSR
↳5 CSRRRRProof (⇔, 0 ms)
↳6 CSR
↳7 CSRRRRProof (⇔, 0 ms)
↳8 CSR
↳9 RisEmptyProof (⇔, 0 ms)
↳10 YES
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
filter: {1, 2, 3}
cons: {1}
0: empty set
s: {1}
sieve: {1}
nats: {1}
zprimes: empty set
The QTRS contained all rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is complete (and sound).
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter: {1, 2, 3}
cons: {1}
0: empty set
s: {1}
sieve: {1}
nats: {1}
zprimes: empty set
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter: {1, 2, 3}
cons: {1}
0: empty set
s: {1}
sieve: {1}
nats: {1}
zprimes: empty set
Used ordering:
Polynomial interpretation [POLO]:
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(cons(x1, x2)) = x1
POL(filter(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(nats(x1)) = x1
POL(s(x1)) = x1
POL(sieve(x1)) = x1
POL(zprimes) = 0
filter(cons(X, Y), 0, M) → cons(0, filter(Y, M, M))
filter(cons(X, Y), s(N), M) → cons(X, filter(Y, N, M))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter: {1, 2, 3}
cons: {1}
0: empty set
s: {1}
sieve: {1}
nats: {1}
zprimes: empty set
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter: {1, 2, 3}
cons: {1}
0: empty set
s: {1}
sieve: {1}
nats: {1}
zprimes: empty set
Used ordering:
Polynomial interpretation [POLO]:
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(cons(x1, x2)) = x1
POL(filter(x1, x2, x3)) = x1 + x2 + x3
POL(nats(x1)) = x1
POL(s(x1)) = x1
POL(sieve(x1)) = x1
POL(zprimes) = 1
zprimes → sieve(nats(s(s(0))))
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
filter: {1, 2, 3}
cons: {1}
0: empty set
s: {1}
sieve: {1}
nats: {1}
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))
filter: {1, 2, 3}
cons: {1}
0: empty set
s: {1}
sieve: {1}
nats: {1}
Used ordering:
Polynomial interpretation [POLO]:
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(cons(x1, x2)) = x1
POL(filter(x1, x2, x3)) = x1 + x2 + x3
POL(nats(x1)) = 1 + x1
POL(s(x1)) = x1
POL(sieve(x1)) = 1 + x1
sieve(cons(0, Y)) → cons(0, sieve(Y))
sieve(cons(s(N), Y)) → cons(s(N), sieve(filter(Y, N, N)))
nats(N) → cons(N, nats(s(N)))