YES Termination w.r.t. Q proof of Transformed_CSR_04_Ex6_Luc98_Z.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(X) → X

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 1   
POL(activate(x1)) = 2 + 2·x1   
POL(cons(x1, x2)) = 1 + x1 + x2   
POL(first(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(from(x1)) = 2 + 2·x1   
POL(n__first(x1, x2)) = 2·x1 + x2   
POL(n__from(x1)) = 1 + x1   
POL(nil) = 0   
POL(s(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

first(0, X) → nil
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(X) → X


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(first(x1, x2)) = 2·x1 + x2   
POL(from(x1)) = 1 + 2·x1   
POL(n__first(x1, x2)) = x1 + x2   
POL(n__from(x1)) = x1   
POL(s(x1)) = x1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

from(X) → cons(X, n__from(s(X)))


(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))

Q is empty.

(5) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Knuth-Bendix order [KBO] with precedence:
activate1 > nfirst2 > first2 > cons2 > s1

and weight map:

s_1=1
activate_1=1
first_2=0
n__first_2=0
cons_2=0

The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))


(6) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(7) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(8) YES