(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(2nd(cons1(X, cons(Y, Z)))) → MARK(Y)
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
ACTIVE(2nd(cons(X, X1))) → 2ND(cons1(X, X1))
ACTIVE(2nd(cons(X, X1))) → CONS1(X, X1)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(from(X)) → S(X)
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
MARK(2nd(X)) → 2ND(mark(X))
MARK(2nd(X)) → MARK(X)
MARK(cons1(X1, X2)) → ACTIVE(cons1(mark(X1), mark(X2)))
MARK(cons1(X1, X2)) → CONS1(mark(X1), mark(X2))
MARK(cons1(X1, X2)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → FROM(mark(X))
MARK(from(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
2ND(mark(X)) → 2ND(X)
2ND(active(X)) → 2ND(X)
CONS1(mark(X1), X2) → CONS1(X1, X2)
CONS1(X1, mark(X2)) → CONS1(X1, X2)
CONS1(active(X1), X2) → CONS1(X1, X2)
CONS1(X1, active(X2)) → CONS1(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)
S(mark(X)) → S(X)
S(active(X)) → S(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 10 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- S(active(X)) → S(X)
The graph contains the following edges 1 > 1
- S(mark(X)) → S(X)
The graph contains the following edges 1 > 1
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(active(X)) → FROM(X)
FROM(mark(X)) → FROM(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(active(X)) → FROM(X)
FROM(mark(X)) → FROM(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- FROM(active(X)) → FROM(X)
The graph contains the following edges 1 > 1
- FROM(mark(X)) → FROM(X)
The graph contains the following edges 1 > 1
(14) YES
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- CONS(X1, mark(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- CONS(mark(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(active(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(X1, active(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(19) YES
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS1(X1, mark(X2)) → CONS1(X1, X2)
CONS1(mark(X1), X2) → CONS1(X1, X2)
CONS1(active(X1), X2) → CONS1(X1, X2)
CONS1(X1, active(X2)) → CONS1(X1, X2)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS1(X1, mark(X2)) → CONS1(X1, X2)
CONS1(mark(X1), X2) → CONS1(X1, X2)
CONS1(active(X1), X2) → CONS1(X1, X2)
CONS1(X1, active(X2)) → CONS1(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- CONS1(X1, mark(X2)) → CONS1(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- CONS1(mark(X1), X2) → CONS1(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS1(active(X1), X2) → CONS1(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS1(X1, active(X2)) → CONS1(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(24) YES
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
2ND(active(X)) → 2ND(X)
2ND(mark(X)) → 2ND(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
2ND(active(X)) → 2ND(X)
2ND(mark(X)) → 2ND(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- 2ND(active(X)) → 2ND(X)
The graph contains the following edges 1 > 1
- 2ND(mark(X)) → 2ND(X)
The graph contains the following edges 1 > 1
(29) YES
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons1(X, cons(Y, Z)))) → MARK(Y)
MARK(2nd(X)) → MARK(X)
MARK(cons1(X1, X2)) → ACTIVE(cons1(mark(X1), mark(X2)))
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
MARK(cons1(X1, X2)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = max{0, 2x1 - 2} |
POL( cons(x1, x2) ) = max{0, -2} |
POL( mark(x1) ) = max{0, x1 - 2} |
POL( active(x1) ) = max{0, -2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons1(X, cons(Y, Z)))) → MARK(Y)
MARK(2nd(X)) → MARK(X)
MARK(cons1(X1, X2)) → ACTIVE(cons1(mark(X1), mark(X2)))
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
MARK(cons1(X1, X2)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( cons(x1, x2) ) = x2 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons1(X, cons(Y, Z)))) → MARK(Y)
MARK(2nd(X)) → MARK(X)
MARK(cons1(X1, X2)) → ACTIVE(cons1(mark(X1), mark(X2)))
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
MARK(cons1(X1, X2)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → MARK(X)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons1(X1, X2)) → ACTIVE(cons1(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = max{0, 2x1 - 1} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons1(X, cons(Y, Z)))) → MARK(Y)
MARK(2nd(X)) → MARK(X)
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
MARK(cons1(X1, X2)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → MARK(X)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(37) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(2nd(cons1(X, cons(Y, Z)))) → MARK(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 1A | + | 1A | · | x1 |
POL(2nd(x1)) = | 3A | + | 0A | · | x1 |
POL(ACTIVE(x1)) = | 1A | + | 1A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(cons1(x1, x2)) = | 1A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(cons(x1, x2)) = | -I | + | 1A | · | x1 | + | 0A | · | x2 |
POL(from(x1)) = | -I | + | 4A | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(2nd(X)) → active(2nd(mark(X)))
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(from(X)) → mark(cons(X, from(s(X))))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
MARK(2nd(X)) → MARK(X)
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
MARK(cons1(X1, X2)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → MARK(X)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(39) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(2nd(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 0A | + | 0A | · | x1 |
POL(2nd(x1)) = | 3A | + | 3A | · | x1 |
POL(ACTIVE(x1)) = | 0A | + | 0A | · | x1 |
POL(mark(x1)) = | 0A | + | 0A | · | x1 |
POL(cons(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(cons1(x1, x2)) = | 0A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(from(x1)) = | -I | + | 0A | · | x1 |
POL(active(x1)) = | 0A | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(2nd(X)) → active(2nd(mark(X)))
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(from(X)) → mark(cons(X, from(s(X))))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
MARK(cons1(X1, X2)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → MARK(X)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(41) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons1(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 0A | + | 0A | · | x1 |
POL(2nd(x1)) = | 5A | + | 4A | · | x1 |
POL(ACTIVE(x1)) = | 0A | + | 0A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | -I | + | 1A | · | x1 | + | 0A | · | x2 |
POL(cons1(x1, x2)) = | 1A | + | 1A | · | x1 | + | 0A | · | x2 |
POL(from(x1)) = | -I | + | 5A | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(2nd(X)) → active(2nd(mark(X)))
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(from(X)) → mark(cons(X, from(s(X))))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
MARK(cons1(X1, X2)) → MARK(X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → MARK(X)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(43) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(from(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | 3A | + | 1A | · | x1 |
POL(2nd(x1)) = | -I | + | 0A | · | x1 |
POL(ACTIVE(x1)) = | 3A | + | 1A | · | x1 |
POL(mark(x1)) = | 0A | + | 0A | · | x1 |
POL(cons(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(cons1(x1, x2)) = | 0A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(from(x1)) = | 4A | + | 4A | · | x1 |
POL(active(x1)) = | 0A | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(2nd(X)) → active(2nd(mark(X)))
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(from(X)) → mark(cons(X, from(s(X))))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
MARK(cons1(X1, X2)) → MARK(X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(45) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(MARK(x1)) = | -I | + | 2A | · | x1 |
POL(2nd(x1)) = | 1A | + | 4A | · | x1 |
POL(ACTIVE(x1)) = | 2A | + | 2A | · | x1 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(cons(x1, x2)) = | -I | + | 1A | · | x1 | + | 0A | · | x2 |
POL(cons1(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(from(x1)) = | 2A | + | 1A | · | x1 |
POL(active(x1)) = | -I | + | 0A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(2nd(X)) → active(2nd(mark(X)))
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(from(X)) → mark(cons(X, from(s(X))))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
MARK(cons1(X1, X2)) → MARK(X2)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(47) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(
x1) =
x1
2nd(
x1) =
2nd
ACTIVE(
x1) =
x1
cons1(
x1,
x2) =
x2
from(
x1) =
from
cons(
x1,
x2) =
cons
s(
x1) =
x1
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
2nd=1
from=3
cons=2
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
MARK(cons1(X1, X2)) → MARK(X2)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(49) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(
x1) =
x1
2nd(
x1) =
2nd
ACTIVE(
x1) =
x1
cons1(
x1,
x2) =
x2
from(
x1) =
from
s(
x1) =
s(
x1)
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
s_1=1
2nd=1
from=2
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
MARK(cons1(X1, X2)) → MARK(X2)
MARK(from(X)) → ACTIVE(from(mark(X)))
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(51) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons1(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(
x1) =
x1
2nd(
x1) =
2nd
ACTIVE(
x1) =
x1
cons1(
x1,
x2) =
cons1(
x2)
from(
x1) =
from
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
2nd=1
from=2
cons1_1=1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
MARK(from(X)) → ACTIVE(from(mark(X)))
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(53) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(from(X)) → ACTIVE(from(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( 2nd(x1) ) = max{0, -2} |
POL( ACTIVE(x1) ) = max{0, x1 - 1} |
POL( active(x1) ) = max{0, x1 - 1} |
POL( cons(x1, x2) ) = x1 + 2x2 + 1 |
POL( s(x1) ) = max{0, -2} |
POL( MARK(x1) ) = max{0, 2x1 - 2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(55) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(2nd(X)) → ACTIVE(2nd(mark(X)))
ACTIVE(2nd(cons(X, X1))) → MARK(2nd(cons1(X, X1)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO,RATPOLO]:
POL(2nd(x1)) = [1] + [4]x1
POL(ACTIVE(x1)) = [1/2] + [2]x1
POL(MARK(x1)) = [4] + [4]x1
POL(active(x1)) = x1
POL(cons(x1, x2)) = [2] + [4]x1 + [1/2]x2
POL(cons1(x1, x2)) = [1/4]x2
POL(from(x1)) = [4] + [4]x1
POL(mark(x1)) = x1
POL(s(x1)) = 0
The value of delta used in the strict ordering is 11/2.
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(2nd(X)) → active(2nd(mark(X)))
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(from(X)) → mark(cons(X, from(s(X))))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(active(X)) → 2nd(X)
2nd(mark(X)) → 2nd(X)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
(56) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(2nd(X)) → active(2nd(mark(X)))
mark(cons1(X1, X2)) → active(cons1(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(s(X)) → active(s(mark(X)))
2nd(mark(X)) → 2nd(X)
2nd(active(X)) → 2nd(X)
cons1(mark(X1), X2) → cons1(X1, X2)
cons1(X1, mark(X2)) → cons1(X1, X2)
cons1(active(X1), X2) → cons1(X1, X2)
cons1(X1, active(X2)) → cons1(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(57) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(58) YES