NO Termination w.r.t. Q proof of Transformed_CSR_04_Ex6_15_AEL02_Z.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(0, Z) → NIL
FIRST(s(X), cons(Y, Z)) → CONS(Y, n__first(X, activate(Z)))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FROM(X) → CONS(X, n__from(s(X)))
FROM(X) → S(X)
SEL1(s(X), cons(Y, Z)) → SEL1(X, activate(Z))
SEL1(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL1(0, cons(X, Z)) → QUOTE(X)
FIRST1(s(X), cons(Y, Z)) → QUOTE(Y)
FIRST1(s(X), cons(Y, Z)) → FIRST1(X, activate(Z))
FIRST1(s(X), cons(Y, Z)) → ACTIVATE(Z)
QUOTE1(n__cons(X, Z)) → QUOTE(activate(X))
QUOTE1(n__cons(X, Z)) → ACTIVATE(X)
QUOTE1(n__cons(X, Z)) → QUOTE1(activate(Z))
QUOTE1(n__cons(X, Z)) → ACTIVATE(Z)
QUOTE(n__s(X)) → QUOTE(activate(X))
QUOTE(n__s(X)) → ACTIVATE(X)
QUOTE(n__sel(X, Z)) → SEL1(activate(X), activate(Z))
QUOTE(n__sel(X, Z)) → ACTIVATE(X)
QUOTE(n__sel(X, Z)) → ACTIVATE(Z)
QUOTE1(n__first(X, Z)) → FIRST1(activate(X), activate(Z))
QUOTE1(n__first(X, Z)) → ACTIVATE(X)
QUOTE1(n__first(X, Z)) → ACTIVATE(Z)
UNQUOTE(01) → 01
UNQUOTE(s1(X)) → S(unquote(X))
UNQUOTE(s1(X)) → UNQUOTE(X)
UNQUOTE1(nil1) → NIL
UNQUOTE1(cons1(X, Z)) → FCONS(unquote(X), unquote1(Z))
UNQUOTE1(cons1(X, Z)) → UNQUOTE(X)
UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)
FCONS(X, Z) → CONS(X, Z)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__0) → 01
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__sel(X1, X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 27 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

UNQUOTE(s1(X)) → UNQUOTE(X)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

UNQUOTE(s1(X)) → UNQUOTE(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • UNQUOTE(s1(X)) → UNQUOTE(X)
    The graph contains the following edges 1 > 1

(9) YES

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)
    The graph contains the following edges 1 > 1

(14) YES

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(X1, X2)) → SEL(X1, X2)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__sel(X1, X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( SEL(x1, x2) ) = x2 + 1

POL( activate(x1) ) = 2x1

POL( n__first(x1, x2) ) = x2

POL( first(x1, x2) ) = 2x2

POL( n__from(x1) ) = x1 + 1

POL( from(x1) ) = 2x1 + 2

POL( n__0 ) = 0

POL( 0 ) = 0

POL( n__cons(x1, x2) ) = x1 + x2

POL( cons(x1, x2) ) = x1 + 2x2

POL( n__nil ) = 0

POL( nil ) = 0

POL( n__s(x1) ) = 0

POL( s(x1) ) = 0

POL( n__sel(x1, x2) ) = 2x2 + 2

POL( sel(x1, x2) ) = 2x2 + 2

POL( ACTIVATE(x1) ) = x1 + 1

POL( FIRST(x1, x2) ) = x2 + 1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
first(0, Z) → nil
first(X1, X2) → n__first(X1, X2)
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
cons(X1, X2) → n__cons(X1, X2)
sel(0, cons(X, Z)) → X
sel(X1, X2) → n__sel(X1, X2)
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
niln__nil
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)
s(X) → n__s(X)
0n__0

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(19) Complex Obligation (AND)

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
    The graph contains the following edges 1 > 1, 1 > 2

  • FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
    The graph contains the following edges 2 > 1

(24) YES

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
    The graph contains the following edges 1 > 1

(27) YES

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL1(0, cons(X, Z)) → QUOTE(X)
QUOTE(n__s(X)) → QUOTE(activate(X))
QUOTE(n__sel(X, Z)) → SEL1(activate(X), activate(Z))
SEL1(s(X), cons(Y, Z)) → SEL1(X, activate(Z))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


SEL1(0, cons(X, Z)) → QUOTE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(SEL1(x1, x2)) = 5A + 4A·x1 + 5A·x2

POL(0) = 3A

POL(cons(x1, x2)) = -I + 3A·x1 + 0A·x2

POL(QUOTE(x1)) = 5A + 3A·x1

POL(n__s(x1)) = -I + 0A·x1

POL(activate(x1)) = -I + 0A·x1

POL(n__sel(x1, x2)) = -I + 3A·x1 + 2A·x2

POL(s(x1)) = -I + 0A·x1

POL(n__first(x1, x2)) = 0A + 0A·x1 + 5A·x2

POL(first(x1, x2)) = 0A + 0A·x1 + 5A·x2

POL(n__from(x1)) = -I + 5A·x1

POL(from(x1)) = -I + 5A·x1

POL(n__0) = 3A

POL(n__cons(x1, x2)) = -I + 3A·x1 + 0A·x2

POL(n__nil) = 0A

POL(nil) = 0A

POL(sel(x1, x2)) = -I + 3A·x1 + 2A·x2

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
first(0, Z) → nil
first(X1, X2) → n__first(X1, X2)
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
cons(X1, X2) → n__cons(X1, X2)
sel(0, cons(X, Z)) → X
sel(X1, X2) → n__sel(X1, X2)
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
niln__nil
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)
s(X) → n__s(X)
0n__0

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE(n__s(X)) → QUOTE(activate(X))
QUOTE(n__sel(X, Z)) → SEL1(activate(X), activate(Z))
SEL1(s(X), cons(Y, Z)) → SEL1(X, activate(Z))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(32) Complex Obligation (AND)

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL1(s(X), cons(Y, Z)) → SEL1(X, activate(Z))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SEL1(s(X), cons(Y, Z)) → SEL1(X, activate(Z))
    The graph contains the following edges 1 > 1

(35) YES

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE(n__s(X)) → QUOTE(activate(X))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule QUOTE(n__s(X)) → QUOTE(activate(X)) at position [0] we obtained the following new rules [LPAR04]:

QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1)) → QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__from(x0))) → QUOTE(from(x0)) → QUOTE(n__s(n__from(x0))) → QUOTE(from(x0))
QUOTE(n__s(n__0)) → QUOTE(0) → QUOTE(n__s(n__0)) → QUOTE(0)
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1)) → QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil) → QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0)) → QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1)) → QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0) → QUOTE(n__s(x0)) → QUOTE(x0)

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__from(x0))) → QUOTE(from(x0))
QUOTE(n__s(n__0)) → QUOTE(0)
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule QUOTE(n__s(n__from(x0))) → QUOTE(from(x0)) at position [0] we obtained the following new rules [LPAR04]:

QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0)))) → QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__from(x0))) → QUOTE(n__from(x0)) → QUOTE(n__s(n__from(x0))) → QUOTE(n__from(x0))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__0)) → QUOTE(0)
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__from(x0))) → QUOTE(n__from(x0))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__0)) → QUOTE(0)
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule QUOTE(n__s(n__0)) → QUOTE(0) at position [0] we obtained the following new rules [LPAR04]:

QUOTE(n__s(n__0)) → QUOTE(n__0) → QUOTE(n__s(n__0)) → QUOTE(n__0)

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__0)) → QUOTE(n__0)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1)) at position [0] we obtained the following new rules [LPAR04]:

QUOTE(n__s(n__cons(x0, x1))) → QUOTE(n__cons(x0, x1)) → QUOTE(n__s(n__cons(x0, x1))) → QUOTE(n__cons(x0, x1))

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(n__cons(x0, x1))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule QUOTE(n__s(n__nil)) → QUOTE(nil) at position [0] we obtained the following new rules [LPAR04]:

QUOTE(n__s(n__nil)) → QUOTE(n__nil) → QUOTE(n__s(n__nil)) → QUOTE(n__nil)

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__nil)) → QUOTE(n__nil)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule QUOTE(n__s(n__s(x0))) → QUOTE(s(x0)) at position [0] we obtained the following new rules [LPAR04]:

QUOTE(n__s(n__s(x0))) → QUOTE(n__s(x0)) → QUOTE(n__s(n__s(x0))) → QUOTE(n__s(x0))

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__s(x0))) → QUOTE(n__s(x0))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__s(x0))) → QUOTE(n__s(x0))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
QUOTE(x1)  =  x1
n__s(x1)  =  n__s(x1)
n__first(x1, x2)  =  n__first(x1, x2)
first(x1, x2)  =  first(x1, x2)
n__sel(x1, x2)  =  n__sel(x1, x2)
sel(x1, x2)  =  sel(x1, x2)
n__from(x1)  =  n__from(x1)
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
0  =  0
nil  =  nil
activate(x1)  =  activate(x1)
n__cons(x1, x2)  =  n__cons(x1, x2)
from(x1)  =  from(x1)
n__0  =  n__0
n__nil  =  n__nil

Recursive path order with status [RPO].
Quasi-Precedence:
[nfirst2, first2] > activate1 > 0 > nil > nnil
[nfirst2, first2] > activate1 > 0 > n0
[nfirst2, first2] > activate1 > from1 > [ns1, s1] > nfrom1
[nfirst2, first2] > activate1 > from1 > [ns1, s1] > [cons2, ncons2]
[nsel2, sel2] > activate1 > 0 > nil > nnil
[nsel2, sel2] > activate1 > 0 > n0
[nsel2, sel2] > activate1 > from1 > [ns1, s1] > nfrom1
[nsel2, sel2] > activate1 > from1 > [ns1, s1] > [cons2, ncons2]

Status:
ns1: multiset
nfirst2: [1,2]
first2: [1,2]
nsel2: [1,2]
sel2: [1,2]
nfrom1: multiset
cons2: multiset
s1: multiset
0: multiset
nil: multiset
activate1: multiset
ncons2: multiset
from1: multiset
n0: multiset
nnil: multiset


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
first(X1, X2) → n__first(X1, X2)
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
sel(X1, X2) → n__sel(X1, X2)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(X) → X
activate(n__sel(X1, X2)) → sel(X1, X2)
niln__nil
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)
0n__0

(58) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(60) YES

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIRST1(s(X), cons(Y, Z)) → FIRST1(X, activate(Z))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • FIRST1(s(X), cons(Y, Z)) → FIRST1(X, activate(Z))
    The graph contains the following edges 1 > 1

(63) YES

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(X, Z)) → QUOTE1(activate(Z))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule QUOTE1(n__cons(X, Z)) → QUOTE1(activate(Z)) at position [0] we obtained the following new rules [LPAR04]:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1)) → QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(from(x0)) → QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(from(x0))
QUOTE1(n__cons(y0, n__0)) → QUOTE1(0) → QUOTE1(n__cons(y0, n__0)) → QUOTE1(0)
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1)) → QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil) → QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0)) → QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1)) → QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0) → QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(from(x0))
QUOTE1(n__cons(y0, n__0)) → QUOTE1(0)
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(from(x0)) at position [0] we obtained the following new rules [LPAR04]:

QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0)))) → QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(n__from(x0)) → QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(n__from(x0))

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__0)) → QUOTE1(0)
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(n__from(x0))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__0)) → QUOTE1(0)
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule QUOTE1(n__cons(y0, n__0)) → QUOTE1(0) at position [0] we obtained the following new rules [LPAR04]:

QUOTE1(n__cons(y0, n__0)) → QUOTE1(n__0) → QUOTE1(n__cons(y0, n__0)) → QUOTE1(n__0)

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__0)) → QUOTE1(n__0)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1)) at position [0] we obtained the following new rules [LPAR04]:

QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1)) → QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil) at position [0] we obtained the following new rules [LPAR04]:

QUOTE1(n__cons(y0, n__nil)) → QUOTE1(n__nil) → QUOTE1(n__cons(y0, n__nil)) → QUOTE1(n__nil)

(78) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(n__nil)

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0)) at position [0] we obtained the following new rules [LPAR04]:

QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(n__s(x0)) → QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(n__s(x0))

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(n__s(x0))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(84) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( QUOTE1(x1) ) = max{0, 2x1 - 1}

POL( first(x1, x2) ) = x2 + 1

POL( 0 ) = 0

POL( nil ) = 0

POL( s(x1) ) = 0

POL( cons(x1, x2) ) = 2x1 + x2 + 1

POL( n__first(x1, x2) ) = x2

POL( activate(x1) ) = x1 + 1

POL( sel(x1, x2) ) = 2x2 + 1

POL( n__sel(x1, x2) ) = 2x2

POL( n__from(x1) ) = 2x1 + 1

POL( n__s(x1) ) = 0

POL( n__cons(x1, x2) ) = 2x1 + x2 + 1

POL( from(x1) ) = 2x1 + 2

POL( n__0 ) = 0

POL( n__nil ) = 0


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
first(X1, X2) → n__first(X1, X2)
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
sel(X1, X2) → n__sel(X1, X2)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(X) → X
activate(n__sel(X1, X2)) → sel(X1, X2)
niln__nil
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)
0n__0

(86) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( QUOTE1(x1) ) = 2x1 + 2

POL( first(x1, x2) ) = 2x2

POL( 0 ) = 0

POL( nil ) = 0

POL( s(x1) ) = 0

POL( cons(x1, x2) ) = 2x1 + 2x2 + 2

POL( n__first(x1, x2) ) = max{0, x2 - 1}

POL( activate(x1) ) = 2x1 + 2

POL( sel(x1, x2) ) = x2 + 2

POL( n__sel(x1, x2) ) = x2 + 1

POL( n__from(x1) ) = 2x1

POL( n__s(x1) ) = 0

POL( n__cons(x1, x2) ) = 2x1 + 2x2 + 2

POL( from(x1) ) = 2x1 + 2

POL( n__0 ) = 0

POL( n__nil ) = 0


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
first(X1, X2) → n__first(X1, X2)
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
sel(X1, X2) → n__sel(X1, X2)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(X) → X
activate(n__sel(X1, X2)) → sel(X1, X2)
niln__nil
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)
0n__0

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))

The TRS R consists of the following rules:

sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0n__0
cons(X1, X2) → n__cons(X1, X2)
niln__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) NonTerminationLoopProof (COMPLETE transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = QUOTE1(cons(X1, n__from(x0))) evaluates to t =QUOTE1(cons(x0, n__from(s(x0))))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [X1 / x0, x0 / s(x0)]
  • Semiunifier: [ ]




Rewriting sequence

QUOTE1(cons(X1, n__from(x0)))QUOTE1(n__cons(X1, n__from(x0)))
with rule cons(X1', X2) → n__cons(X1', X2) at position [0] and matcher [X1' / X1, X2 / n__from(x0)]

QUOTE1(n__cons(X1, n__from(x0)))QUOTE1(cons(x0, n__from(s(x0))))
with rule QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(90) NO