(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(0, Z) → NIL
FIRST(s(X), cons(Y, Z)) → CONS(Y, n__first(X, activate(Z)))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FROM(X) → CONS(X, n__from(s(X)))
FROM(X) → S(X)
SEL1(s(X), cons(Y, Z)) → SEL1(X, activate(Z))
SEL1(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL1(0, cons(X, Z)) → QUOTE(X)
FIRST1(s(X), cons(Y, Z)) → QUOTE(Y)
FIRST1(s(X), cons(Y, Z)) → FIRST1(X, activate(Z))
FIRST1(s(X), cons(Y, Z)) → ACTIVATE(Z)
QUOTE1(n__cons(X, Z)) → QUOTE(activate(X))
QUOTE1(n__cons(X, Z)) → ACTIVATE(X)
QUOTE1(n__cons(X, Z)) → QUOTE1(activate(Z))
QUOTE1(n__cons(X, Z)) → ACTIVATE(Z)
QUOTE(n__s(X)) → QUOTE(activate(X))
QUOTE(n__s(X)) → ACTIVATE(X)
QUOTE(n__sel(X, Z)) → SEL1(activate(X), activate(Z))
QUOTE(n__sel(X, Z)) → ACTIVATE(X)
QUOTE(n__sel(X, Z)) → ACTIVATE(Z)
QUOTE1(n__first(X, Z)) → FIRST1(activate(X), activate(Z))
QUOTE1(n__first(X, Z)) → ACTIVATE(X)
QUOTE1(n__first(X, Z)) → ACTIVATE(Z)
UNQUOTE(01) → 01
UNQUOTE(s1(X)) → S(unquote(X))
UNQUOTE(s1(X)) → UNQUOTE(X)
UNQUOTE1(nil1) → NIL
UNQUOTE1(cons1(X, Z)) → FCONS(unquote(X), unquote1(Z))
UNQUOTE1(cons1(X, Z)) → UNQUOTE(X)
UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)
FCONS(X, Z) → CONS(X, Z)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__0) → 01
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__sel(X1, X2)) → SEL(X1, X2)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 27 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
UNQUOTE(s1(X)) → UNQUOTE(X)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
UNQUOTE(s1(X)) → UNQUOTE(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- UNQUOTE(s1(X)) → UNQUOTE(X)
The graph contains the following edges 1 > 1
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)
The graph contains the following edges 1 > 1
(14) YES
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(X1, X2)) → SEL(X1, X2)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__sel(X1, X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( SEL(x1, x2) ) = x2 + 1 |
POL( activate(x1) ) = 2x1 |
POL( n__first(x1, x2) ) = x2 |
POL( first(x1, x2) ) = 2x2 |
POL( n__from(x1) ) = x1 + 1 |
POL( from(x1) ) = 2x1 + 2 |
POL( n__cons(x1, x2) ) = x1 + x2 |
POL( cons(x1, x2) ) = x1 + 2x2 |
POL( n__sel(x1, x2) ) = 2x2 + 2 |
POL( sel(x1, x2) ) = 2x2 + 2 |
POL( ACTIVATE(x1) ) = x1 + 1 |
POL( FIRST(x1, x2) ) = x2 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
first(0, Z) → nil
first(X1, X2) → n__first(X1, X2)
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
cons(X1, X2) → n__cons(X1, X2)
sel(0, cons(X, Z)) → X
sel(X1, X2) → n__sel(X1, X2)
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
nil → n__nil
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)
s(X) → n__s(X)
0 → n__0
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(19) Complex Obligation (AND)
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ACTIVATE(n__first(X1, X2)) → FIRST(X1, X2)
The graph contains the following edges 1 > 1, 1 > 2
- FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
The graph contains the following edges 2 > 1
(24) YES
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
The graph contains the following edges 1 > 1
(27) YES
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL1(0, cons(X, Z)) → QUOTE(X)
QUOTE(n__s(X)) → QUOTE(activate(X))
QUOTE(n__sel(X, Z)) → SEL1(activate(X), activate(Z))
SEL1(s(X), cons(Y, Z)) → SEL1(X, activate(Z))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(29) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
SEL1(0, cons(X, Z)) → QUOTE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(SEL1(x1, x2)) = | 5A | + | 4A | · | x1 | + | 5A | · | x2 |
POL(cons(x1, x2)) = | -I | + | 3A | · | x1 | + | 0A | · | x2 |
POL(QUOTE(x1)) = | 5A | + | 3A | · | x1 |
POL(n__s(x1)) = | -I | + | 0A | · | x1 |
POL(activate(x1)) = | -I | + | 0A | · | x1 |
POL(n__sel(x1, x2)) = | -I | + | 3A | · | x1 | + | 2A | · | x2 |
POL(n__first(x1, x2)) = | 0A | + | 0A | · | x1 | + | 5A | · | x2 |
POL(first(x1, x2)) = | 0A | + | 0A | · | x1 | + | 5A | · | x2 |
POL(n__from(x1)) = | -I | + | 5A | · | x1 |
POL(from(x1)) = | -I | + | 5A | · | x1 |
POL(n__cons(x1, x2)) = | -I | + | 3A | · | x1 | + | 0A | · | x2 |
POL(sel(x1, x2)) = | -I | + | 3A | · | x1 | + | 2A | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
first(0, Z) → nil
first(X1, X2) → n__first(X1, X2)
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
cons(X1, X2) → n__cons(X1, X2)
sel(0, cons(X, Z)) → X
sel(X1, X2) → n__sel(X1, X2)
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
nil → n__nil
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)
s(X) → n__s(X)
0 → n__0
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(n__s(X)) → QUOTE(activate(X))
QUOTE(n__sel(X, Z)) → SEL1(activate(X), activate(Z))
SEL1(s(X), cons(Y, Z)) → SEL1(X, activate(Z))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(32) Complex Obligation (AND)
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL1(s(X), cons(Y, Z)) → SEL1(X, activate(Z))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(34) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SEL1(s(X), cons(Y, Z)) → SEL1(X, activate(Z))
The graph contains the following edges 1 > 1
(35) YES
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(n__s(X)) → QUOTE(activate(X))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(37) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
QUOTE(
n__s(
X)) →
QUOTE(
activate(
X)) at position [0] we obtained the following new rules [LPAR04]:
QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1)) → QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__from(x0))) → QUOTE(from(x0)) → QUOTE(n__s(n__from(x0))) → QUOTE(from(x0))
QUOTE(n__s(n__0)) → QUOTE(0) → QUOTE(n__s(n__0)) → QUOTE(0)
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1)) → QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil) → QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0)) → QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1)) → QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0) → QUOTE(n__s(x0)) → QUOTE(x0)
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__from(x0))) → QUOTE(from(x0))
QUOTE(n__s(n__0)) → QUOTE(0)
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(39) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
QUOTE(
n__s(
n__from(
x0))) →
QUOTE(
from(
x0)) at position [0] we obtained the following new rules [LPAR04]:
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0)))) → QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__from(x0))) → QUOTE(n__from(x0)) → QUOTE(n__s(n__from(x0))) → QUOTE(n__from(x0))
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__0)) → QUOTE(0)
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__from(x0))) → QUOTE(n__from(x0))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(41) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__0)) → QUOTE(0)
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(43) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
QUOTE(
n__s(
n__0)) →
QUOTE(
0) at position [0] we obtained the following new rules [LPAR04]:
QUOTE(n__s(n__0)) → QUOTE(n__0) → QUOTE(n__s(n__0)) → QUOTE(n__0)
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__0)) → QUOTE(n__0)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(45) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(cons(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(47) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
QUOTE(
n__s(
n__cons(
x0,
x1))) →
QUOTE(
cons(
x0,
x1)) at position [0] we obtained the following new rules [LPAR04]:
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(n__cons(x0, x1)) → QUOTE(n__s(n__cons(x0, x1))) → QUOTE(n__cons(x0, x1))
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__cons(x0, x1))) → QUOTE(n__cons(x0, x1))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(49) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__nil)) → QUOTE(nil)
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(51) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
QUOTE(
n__s(
n__nil)) →
QUOTE(
nil) at position [0] we obtained the following new rules [LPAR04]:
QUOTE(n__s(n__nil)) → QUOTE(n__nil) → QUOTE(n__s(n__nil)) → QUOTE(n__nil)
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__nil)) → QUOTE(n__nil)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(53) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__s(x0))) → QUOTE(s(x0))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(55) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
QUOTE(
n__s(
n__s(
x0))) →
QUOTE(
s(
x0)) at position [0] we obtained the following new rules [LPAR04]:
QUOTE(n__s(n__s(x0))) → QUOTE(n__s(x0)) → QUOTE(n__s(n__s(x0))) → QUOTE(n__s(x0))
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__s(x0))) → QUOTE(n__s(x0))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(57) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
QUOTE(n__s(n__first(x0, x1))) → QUOTE(first(x0, x1))
QUOTE(n__s(n__sel(x0, x1))) → QUOTE(sel(x0, x1))
QUOTE(n__s(x0)) → QUOTE(x0)
QUOTE(n__s(n__from(x0))) → QUOTE(cons(x0, n__from(s(x0))))
QUOTE(n__s(n__s(x0))) → QUOTE(n__s(x0))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
QUOTE(
x1) =
x1
n__s(
x1) =
n__s(
x1)
n__first(
x1,
x2) =
n__first(
x1,
x2)
first(
x1,
x2) =
first(
x1,
x2)
n__sel(
x1,
x2) =
n__sel(
x1,
x2)
sel(
x1,
x2) =
sel(
x1,
x2)
n__from(
x1) =
n__from(
x1)
cons(
x1,
x2) =
cons(
x1,
x2)
s(
x1) =
s(
x1)
0 =
0
nil =
nil
activate(
x1) =
activate(
x1)
n__cons(
x1,
x2) =
n__cons(
x1,
x2)
from(
x1) =
from(
x1)
n__0 =
n__0
n__nil =
n__nil
Recursive path order with status [RPO].
Quasi-Precedence:
[nfirst2, first2] > activate1 > 0 > nil > nnil
[nfirst2, first2] > activate1 > 0 > n0
[nfirst2, first2] > activate1 > from1 > [ns1, s1] > nfrom1
[nfirst2, first2] > activate1 > from1 > [ns1, s1] > [cons2, ncons2]
[nsel2, sel2] > activate1 > 0 > nil > nnil
[nsel2, sel2] > activate1 > 0 > n0
[nsel2, sel2] > activate1 > from1 > [ns1, s1] > nfrom1
[nsel2, sel2] > activate1 > from1 > [ns1, s1] > [cons2, ncons2]
Status:
ns1: multiset
nfirst2: [1,2]
first2: [1,2]
nsel2: [1,2]
sel2: [1,2]
nfrom1: multiset
cons2: multiset
s1: multiset
0: multiset
nil: multiset
activate1: multiset
ncons2: multiset
from1: multiset
n0: multiset
nnil: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
first(X1, X2) → n__first(X1, X2)
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
sel(X1, X2) → n__sel(X1, X2)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(X) → X
activate(n__sel(X1, X2)) → sel(X1, X2)
nil → n__nil
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)
0 → n__0
(58) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(59) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(60) YES
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FIRST1(s(X), cons(Y, Z)) → FIRST1(X, activate(Z))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(62) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- FIRST1(s(X), cons(Y, Z)) → FIRST1(X, activate(Z))
The graph contains the following edges 1 > 1
(63) YES
(64) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(X, Z)) → QUOTE1(activate(Z))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(65) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
QUOTE1(
n__cons(
X,
Z)) →
QUOTE1(
activate(
Z)) at position [0] we obtained the following new rules [LPAR04]:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1)) → QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(from(x0)) → QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(from(x0))
QUOTE1(n__cons(y0, n__0)) → QUOTE1(0) → QUOTE1(n__cons(y0, n__0)) → QUOTE1(0)
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1)) → QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil) → QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0)) → QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1)) → QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0) → QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
(66) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(from(x0))
QUOTE1(n__cons(y0, n__0)) → QUOTE1(0)
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(67) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
QUOTE1(
n__cons(
y0,
n__from(
x0))) →
QUOTE1(
from(
x0)) at position [0] we obtained the following new rules [LPAR04]:
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0)))) → QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(n__from(x0)) → QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(n__from(x0))
(68) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__0)) → QUOTE1(0)
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(n__from(x0))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(69) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__0)) → QUOTE1(0)
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(71) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
QUOTE1(
n__cons(
y0,
n__0)) →
QUOTE1(
0) at position [0] we obtained the following new rules [LPAR04]:
QUOTE1(n__cons(y0, n__0)) → QUOTE1(n__0) → QUOTE1(n__cons(y0, n__0)) → QUOTE1(n__0)
(72) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__0)) → QUOTE1(n__0)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(73) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(74) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(75) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
QUOTE1(
n__cons(
y0,
n__cons(
x0,
x1))) →
QUOTE1(
cons(
x0,
x1)) at position [0] we obtained the following new rules [LPAR04]:
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1)) → QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(nil)
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(77) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
QUOTE1(
n__cons(
y0,
n__nil)) →
QUOTE1(
nil) at position [0] we obtained the following new rules [LPAR04]:
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(n__nil) → QUOTE1(n__cons(y0, n__nil)) → QUOTE1(n__nil)
(78) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))
QUOTE1(n__cons(y0, n__nil)) → QUOTE1(n__nil)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(79) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(80) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(s(x0))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(81) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
QUOTE1(
n__cons(
y0,
n__s(
x0))) →
QUOTE1(
s(
x0)) at position [0] we obtained the following new rules [LPAR04]:
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(n__s(x0)) → QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(n__s(x0))
(82) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))
QUOTE1(n__cons(y0, n__s(x0))) → QUOTE1(n__s(x0))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(83) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(84) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(85) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
QUOTE1(n__cons(y0, x0)) → QUOTE1(x0)
QUOTE1(n__cons(y0, n__cons(x0, x1))) → QUOTE1(n__cons(x0, x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( QUOTE1(x1) ) = max{0, 2x1 - 1} |
POL( first(x1, x2) ) = x2 + 1 |
POL( cons(x1, x2) ) = 2x1 + x2 + 1 |
POL( n__first(x1, x2) ) = x2 |
POL( activate(x1) ) = x1 + 1 |
POL( sel(x1, x2) ) = 2x2 + 1 |
POL( n__sel(x1, x2) ) = 2x2 |
POL( n__from(x1) ) = 2x1 + 1 |
POL( n__cons(x1, x2) ) = 2x1 + x2 + 1 |
POL( from(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
first(X1, X2) → n__first(X1, X2)
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
sel(X1, X2) → n__sel(X1, X2)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(X) → X
activate(n__sel(X1, X2)) → sel(X1, X2)
nil → n__nil
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)
0 → n__0
(86) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(87) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
QUOTE1(n__cons(y0, n__sel(x0, x1))) → QUOTE1(sel(x0, x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( QUOTE1(x1) ) = 2x1 + 2 |
POL( first(x1, x2) ) = 2x2 |
POL( cons(x1, x2) ) = 2x1 + 2x2 + 2 |
POL( n__first(x1, x2) ) = max{0, x2 - 1} |
POL( activate(x1) ) = 2x1 + 2 |
POL( sel(x1, x2) ) = x2 + 2 |
POL( n__sel(x1, x2) ) = x2 + 1 |
POL( n__cons(x1, x2) ) = 2x1 + 2x2 + 2 |
POL( from(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
first(X1, X2) → n__first(X1, X2)
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
sel(X1, X2) → n__sel(X1, X2)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(X) → X
activate(n__sel(X1, X2)) → sel(X1, X2)
nil → n__nil
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)
0 → n__0
(88) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(y0, n__first(x0, x1))) → QUOTE1(first(x0, x1))
QUOTE1(n__cons(y0, n__from(x0))) → QUOTE1(cons(x0, n__from(s(x0))))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
s(X) → n__s(X)
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(n__s(X)) → s(X)
activate(n__sel(X1, X2)) → sel(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(89) NonTerminationLoopProof (COMPLETE transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
QUOTE1(
cons(
X1,
n__from(
x0))) evaluates to t =
QUOTE1(
cons(
x0,
n__from(
s(
x0))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [X1 / x0, x0 / s(x0)]
- Semiunifier: [ ]
Rewriting sequenceQUOTE1(cons(X1, n__from(x0))) →
QUOTE1(
n__cons(
X1,
n__from(
x0)))
with rule
cons(
X1',
X2) →
n__cons(
X1',
X2) at position [0] and matcher [
X1' /
X1,
X2 /
n__from(
x0)]
QUOTE1(n__cons(X1, n__from(x0))) →
QUOTE1(
cons(
x0,
n__from(
s(
x0))))
with rule
QUOTE1(
n__cons(
y0,
n__from(
x0))) →
QUOTE1(
cons(
x0,
n__from(
s(
x0))))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(90) NO