YES Termination w.r.t. Q proof of Transformed_CSR_04_Ex5_Zan97_Z.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → if(X, c, n__f(true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Knuth-Bendix order [KBO] with precedence:
f1 > if3 > activate1 > false > nf1 > true > c

and weight map:

c=1
true=1
false=2
f_1=3
n__f_1=1
activate_1=3
if_3=0

The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

f(X) → if(X, c, n__f(true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) YES