YES Termination w.r.t. Q proof of Transformed_CSR_04_Ex5_Zan97_FR.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(activate(x1)) = x1   
POL(c) = 0   
POL(f(x1)) = 2 + 2·x1   
POL(false) = 2   
POL(if(x1, x2, x3)) = 2·x1 + x2 + x3   
POL(n__f(x1)) = 2 + 2·x1   
POL(n__true) = 0   
POL(true) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

if(false, X, Y) → activate(Y)


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(activate(x1)) = 2 + 2·x1   
POL(c) = 0   
POL(f(x1)) = 2 + 2·x1   
POL(if(x1, x2, x3)) = x1 + x2 + x3   
POL(n__f(x1)) = 2 + 2·x1   
POL(n__true) = 0   
POL(true) = 1   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

if(true, X, Y) → X
truen__true
activate(n__true) → true
activate(X) → X


(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
f(X) → n__f(X)
activate(n__f(X)) → f(activate(X))

Q is empty.

(5) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(activate(x1)) = 2·x1   
POL(c) = 0   
POL(f(x1)) = 2 + 2·x1   
POL(if(x1, x2, x3)) = x1 + x2 + x3   
POL(n__f(x1)) = 2 + 2·x1   
POL(n__true) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

activate(n__f(X)) → f(activate(X))


(6) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
f(X) → n__f(X)

Q is empty.

(7) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Knuth-Bendix order [KBO] with precedence:
ntrue > nf1 > c > f1 > if3

and weight map:

c=1
n__true=1
f_1=3
n__f_1=1
if_3=0

The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

f(X) → if(X, c, n__f(n__true))
f(X) → n__f(X)


(8) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(9) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(10) YES