YES
0 QTRS
↳1 QTRSRRRProof (⇔, 0 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 10 ms)
↳4 QTRS
↳5 QTRSRRRProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 0 ms)
↳8 QTRS
↳9 RisEmptyProof (⇔, 0 ms)
↳10 YES
f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
true → n__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(activate(x1)) = x1
POL(c) = 0
POL(f(x1)) = 2 + 2·x1
POL(false) = 2
POL(if(x1, x2, x3)) = 2·x1 + x2 + x3
POL(n__f(x1)) = 2 + 2·x1
POL(n__true) = 0
POL(true) = 0
if(false, X, Y) → activate(Y)
f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
f(X) → n__f(X)
true → n__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(activate(x1)) = 2 + 2·x1
POL(c) = 0
POL(f(x1)) = 2 + 2·x1
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(n__f(x1)) = 2 + 2·x1
POL(n__true) = 0
POL(true) = 1
if(true, X, Y) → X
true → n__true
activate(n__true) → true
activate(X) → X
f(X) → if(X, c, n__f(n__true))
f(X) → n__f(X)
activate(n__f(X)) → f(activate(X))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(activate(x1)) = 2·x1
POL(c) = 0
POL(f(x1)) = 2 + 2·x1
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(n__f(x1)) = 2 + 2·x1
POL(n__true) = 0
activate(n__f(X)) → f(activate(X))
f(X) → if(X, c, n__f(n__true))
f(X) → n__f(X)
ntrue > nf1 > c > f1 > if3
c=1
n__true=1
f_1=3
n__f_1=1
if_3=0
f(X) → if(X, c, n__f(n__true))
f(X) → n__f(X)