YES
0 QTRS
↳1 QTRSToCSRProof (⇔, 0 ms)
↳2 CSR
↳3 CSRRRRProof (⇔, 0 ms)
↳4 CSR
↳5 CSRRRRProof (⇔, 3 ms)
↳6 CSR
↳7 RisEmptyProof (⇔, 0 ms)
↳8 YES
active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(f(X)) → f(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(if(X1, X2, X3)) → if(X1, active(X2), X3)
f(mark(X)) → mark(f(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
if(X1, mark(X2), X3) → mark(if(X1, X2, X3))
proper(f(X)) → f(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(c) → ok(c)
proper(true) → ok(true)
proper(false) → ok(false)
f(ok(X)) → ok(f(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(f(X)) → f(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(if(X1, X2, X3)) → if(X1, active(X2), X3)
f(mark(X)) → mark(f(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
if(X1, mark(X2), X3) → mark(if(X1, X2, X3))
proper(f(X)) → f(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(c) → ok(c)
proper(true) → ok(true)
proper(false) → ok(false)
f(ok(X)) → ok(f(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
f: {1}
if: {1, 2}
c: empty set
true: empty set
false: empty set
The QTRS contained all rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is complete (and sound).
f(X) → if(X, c, f(true))
if(true, X, Y) → X
if(false, X, Y) → Y
f: {1}
if: {1, 2}
c: empty set
true: empty set
false: empty set
f(X) → if(X, c, f(true))
if(true, X, Y) → X
if(false, X, Y) → Y
f: {1}
if: {1, 2}
c: empty set
true: empty set
false: empty set
Used ordering:
Polynomial interpretation [POLO]:
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(c) = 0
POL(f(x1)) = 2·x1
POL(false) = 1
POL(if(x1, x2, x3)) = x1 + 2·x2 + 2·x3
POL(true) = 0
if(false, X, Y) → Y
f(X) → if(X, c, f(true))
if(true, X, Y) → X
f: {1}
if: {1, 2}
c: empty set
true: empty set
f(X) → if(X, c, f(true))
if(true, X, Y) → X
f: {1}
if: {1, 2}
c: empty set
true: empty set
Used ordering:
Polynomial interpretation [POLO]:
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(c) = 0
POL(f(x1)) = 1 + x1
POL(if(x1, x2, x3)) = x1 + x2
POL(true) = 1
f(X) → if(X, c, f(true))
if(true, X, Y) → X