(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(active(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 1
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2 + 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = 1 + x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(zip(x1, x2)) = 1 + x1 + x2
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(active(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2 + 2·x1
POL(s(x1)) = 2·x1
POL(tail(x1)) = 2 + x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(zip(x1, x2)) = 1 + x1 + x2
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
active(take(0, XS)) → mark(nil)
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
ACTIVE(pairNs) → CONS(0, incr(oddNs))
ACTIVE(pairNs) → INCR(oddNs)
ACTIVE(oddNs) → MARK(incr(pairNs))
ACTIVE(oddNs) → INCR(pairNs)
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
ACTIVE(incr(cons(X, XS))) → CONS(s(X), incr(XS))
ACTIVE(incr(cons(X, XS))) → S(X)
ACTIVE(incr(cons(X, XS))) → INCR(XS)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
ACTIVE(take(s(N), cons(X, XS))) → CONS(X, take(N, XS))
ACTIVE(take(s(N), cons(X, XS))) → TAKE(N, XS)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → CONS(pair(X, Y), zip(XS, YS))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → PAIR(X, Y)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → ZIP(XS, YS)
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
ACTIVE(repItems(cons(X, XS))) → CONS(X, cons(X, repItems(XS)))
ACTIVE(repItems(cons(X, XS))) → CONS(X, repItems(XS))
ACTIVE(repItems(cons(X, XS))) → REPITEMS(XS)
MARK(pairNs) → ACTIVE(pairNs)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(0) → ACTIVE(0)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → ACTIVE(oddNs)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(nil) → ACTIVE(nil)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(zip(X1, X2)) → ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → PAIR(mark(X1), mark(X2))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → TAIL(mark(X))
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
MARK(repItems(X)) → REPITEMS(mark(X))
MARK(repItems(X)) → MARK(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
INCR(mark(X)) → INCR(X)
INCR(active(X)) → INCR(X)
S(mark(X)) → S(X)
S(active(X)) → S(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
ZIP(mark(X1), X2) → ZIP(X1, X2)
ZIP(X1, mark(X2)) → ZIP(X1, X2)
ZIP(active(X1), X2) → ZIP(X1, X2)
ZIP(X1, active(X2)) → ZIP(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)
TAIL(mark(X)) → TAIL(X)
TAIL(active(X)) → TAIL(X)
REPITEMS(mark(X)) → REPITEMS(X)
REPITEMS(active(X)) → REPITEMS(X)
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 24 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REPITEMS(active(X)) → REPITEMS(X)
REPITEMS(mark(X)) → REPITEMS(X)
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REPITEMS(active(X)) → REPITEMS(X)
REPITEMS(mark(X)) → REPITEMS(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- REPITEMS(active(X)) → REPITEMS(X)
The graph contains the following edges 1 > 1
- REPITEMS(mark(X)) → REPITEMS(X)
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TAIL(active(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TAIL(active(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- TAIL(active(X)) → TAIL(X)
The graph contains the following edges 1 > 1
- TAIL(mark(X)) → TAIL(X)
The graph contains the following edges 1 > 1
(18) YES
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(20) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(22) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- PAIR(X1, mark(X2)) → PAIR(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- PAIR(mark(X1), X2) → PAIR(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- PAIR(active(X1), X2) → PAIR(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- PAIR(X1, active(X2)) → PAIR(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(23) YES
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ZIP(X1, mark(X2)) → ZIP(X1, X2)
ZIP(mark(X1), X2) → ZIP(X1, X2)
ZIP(active(X1), X2) → ZIP(X1, X2)
ZIP(X1, active(X2)) → ZIP(X1, X2)
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ZIP(X1, mark(X2)) → ZIP(X1, X2)
ZIP(mark(X1), X2) → ZIP(X1, X2)
ZIP(active(X1), X2) → ZIP(X1, X2)
ZIP(X1, active(X2)) → ZIP(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(27) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ZIP(X1, mark(X2)) → ZIP(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- ZIP(mark(X1), X2) → ZIP(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- ZIP(active(X1), X2) → ZIP(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- ZIP(X1, active(X2)) → ZIP(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(28) YES
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(30) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(32) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- TAKE(X1, mark(X2)) → TAKE(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- TAKE(mark(X1), X2) → TAKE(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- TAKE(active(X1), X2) → TAKE(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- TAKE(X1, active(X2)) → TAKE(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(33) YES
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(37) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- S(active(X)) → S(X)
The graph contains the following edges 1 > 1
- S(mark(X)) → S(X)
The graph contains the following edges 1 > 1
(38) YES
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(active(X)) → INCR(X)
INCR(mark(X)) → INCR(X)
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(40) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(active(X)) → INCR(X)
INCR(mark(X)) → INCR(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(42) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- INCR(active(X)) → INCR(X)
The graph contains the following edges 1 > 1
- INCR(mark(X)) → INCR(X)
The graph contains the following edges 1 > 1
(43) YES
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(45) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(47) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- CONS(X1, mark(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- CONS(mark(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(active(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(X1, active(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(48) YES
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
MARK(repItems(X)) → MARK(X)
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(50) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(repItems(X)) → MARK(X)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVE(x1)) = 1 + x1
POL(MARK(x1)) = 1 + x1
POL(active(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 1
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 1 + 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = 2·x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(zip(x1, x2)) = 2 + x1 + 2·x2
(51) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(52) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
MARK(tail(X)) → MARK(X)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVE(x1)) = 2 + x1
POL(MARK(x1)) = 2 + x1
POL(active(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = 2·x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 1 + 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = 1 + x1
POL(take(x1, x2)) = 2 + 2·x1 + x2
POL(zip(x1, x2)) = 2 + 2·x1 + 2·x2
(53) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(54) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
ACTIVE(oddNs) → MARK(incr(pairNs))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(
x1) =
x1
cons(
x1,
x2) =
x1
ACTIVE(
x1) =
x1
mark(
x1) =
x1
incr(
x1) =
x1
s(
x1) =
x1
pairNs =
pairNs
0 =
0
take(
x1,
x2) =
x2
oddNs =
oddNs
zip(
x1,
x2) =
zip(
x1,
x2)
pair(
x1,
x2) =
pair(
x1,
x2)
repItems(
x1) =
x1
tail(
x1) =
tail
active(
x1) =
x1
nil =
nil
Knuth-Bendix order [KBO] with precedence:
oddNs > pairNs > 0
and weight map:
oddNs=1
tail=2
zip_2=2
0=1
pair_2=1
pairNs=1
nil=2
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
mark(incr(X)) → active(incr(mark(X)))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
mark(pairNs) → active(pairNs)
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
mark(0) → active(0)
mark(nil) → active(nil)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)
tail(active(X)) → tail(X)
tail(mark(X)) → tail(X)
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(pairNs) → ACTIVE(pairNs)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → ACTIVE(oddNs)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(56) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(57) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(58) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(
x1) =
x1
incr(
x1) =
x1
cons(
x1,
x2) =
x1
MARK(
x1) =
x1
s(
x1) =
x1
mark(
x1) =
x1
take(
x1,
x2) =
x2
repItems(
x1) =
repItems(
x1)
zip(
x1,
x2) =
zip
pair(
x1,
x2) =
pair
tail(
x1) =
tail
active(
x1) =
x1
pairNs =
pairNs
0 =
0
oddNs =
oddNs
nil =
nil
Knuth-Bendix order [KBO] with precedence:
oddNs > pairNs > 0
and weight map:
oddNs=1
tail=2
zip=3
0=1
pair=2
pairNs=1
repItems_1=1
nil=2
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(active(X)) → s(X)
s(mark(X)) → s(X)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
mark(incr(X)) → active(incr(mark(X)))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
mark(pairNs) → active(pairNs)
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
mark(0) → active(0)
mark(nil) → active(nil)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)
zip(X1, mark(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(active(X)) → tail(X)
tail(mark(X)) → tail(X)
(59) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(60) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(
x1) =
x1
incr(
x1) =
x1
cons(
x1,
x2) =
x1
MARK(
x1) =
x1
s(
x1) =
x1
mark(
x1) =
x1
take(
x1,
x2) =
take(
x2)
zip(
x1,
x2) =
zip
pair(
x1,
x2) =
pair
tail(
x1) =
tail
repItems(
x1) =
x1
active(
x1) =
x1
pairNs =
pairNs
0 =
0
oddNs =
oddNs
nil =
nil
Knuth-Bendix order [KBO] with precedence:
oddNs > pairNs > 0
and weight map:
oddNs=1
tail=2
zip=3
take_1=1
0=1
pair=2
pairNs=1
nil=2
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(active(X)) → s(X)
s(mark(X)) → s(X)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
mark(incr(X)) → active(incr(mark(X)))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
mark(pairNs) → active(pairNs)
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
mark(0) → active(0)
mark(nil) → active(nil)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(active(X)) → tail(X)
tail(mark(X)) → tail(X)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(62) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = x1 + 1 |
POL( s(x1) ) = max{0, -2} |
POL( mark(x1) ) = 2x1 + 1 |
POL( take(x1, x2) ) = max{0, -2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(active(X)) → s(X)
s(mark(X)) → s(X)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(active(X)) → tail(X)
tail(mark(X)) → tail(X)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(64) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( cons(x1, x2) ) = 2x1 |
POL( ACTIVE(x1) ) = max{0, 2x1 - 1} |
POL( pair(x1, x2) ) = max{0, -2} |
POL( zip(x1, x2) ) = 2x1 + 2 |
POL( repItems(x1) ) = x1 + 2 |
POL( tail(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
s(active(X)) → s(X)
s(mark(X)) → s(X)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
mark(incr(X)) → active(incr(mark(X)))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
mark(pairNs) → active(pairNs)
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
mark(0) → active(0)
mark(nil) → active(nil)
pair(X1, mark(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)
tail(active(X)) → tail(X)
tail(mark(X)) → tail(X)
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(66) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(68) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(69) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(70) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MARK(s(X)) → MARK(X)
The graph contains the following edges 1 > 1
- MARK(cons(X1, X2)) → MARK(X1)
The graph contains the following edges 1 > 1
(71) YES