NO
0 QTRS
↳1 QTRSRRRProof (⇔, 80 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 0 ms)
↳4 QTRS
↳5 QTRSRRRProof (⇔, 17 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 0 ms)
↳8 QTRS
↳9 QTRSRRRProof (⇔, 0 ms)
↳10 QTRS
↳11 QTRSRRRProof (⇔, 5 ms)
↳12 QTRS
↳13 DependencyPairsProof (⇔, 0 ms)
↳14 QDP
↳15 DependencyGraphProof (⇔, 0 ms)
↳16 AND
↳17 QDP
↳18 UsableRulesProof (⇔, 0 ms)
↳19 QDP
↳20 QDPSizeChangeProof (⇔, 0 ms)
↳21 YES
↳22 QDP
↳23 UsableRulesProof (⇔, 0 ms)
↳24 QDP
↳25 NonTerminationLoopProof (⇒, 0 ms)
↳26 NO
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(activate(x1)) = 2·x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(incr(x1)) = 2·x1
POL(n__cons(x1, x2)) = x1 + x2
POL(n__incr(x1)) = x1
POL(n__repItems(x1)) = 1 + x1
POL(n__take(x1, x2)) = x1 + x2
POL(n__zip(x1, x2)) = 1 + x1 + x2
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + 2·x2
POL(pairNs) = 0
POL(repItems(x1)) = 2 + 2·x1
POL(s(x1)) = 2·x1
POL(tail(x1)) = x1
POL(take(x1, x2)) = x1 + 2·x2
POL(zip(x1, x2)) = 2 + 2·x1 + 2·x2
zip(nil, XS) → nil
zip(X, nil) → nil
repItems(nil) → nil
zip(X1, X2) → n__zip(X1, X2)
repItems(X) → n__repItems(X)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(n__cons(x1, x2)) = 2·x1 + x2
POL(n__incr(x1)) = 2·x1
POL(n__repItems(x1)) = 2 + 2·x1
POL(n__take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(n__zip(x1, x2)) = x1 + 2·x2
POL(nil) = 1
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + 2·x2
POL(pairNs) = 0
POL(repItems(x1)) = 2 + 2·x1
POL(s(x1)) = 2·x1
POL(tail(x1)) = 2·x1
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(zip(x1, x2)) = x1 + 2·x2
take(0, XS) → nil
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(activate(x1)) = 2·x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(n__cons(x1, x2)) = x1 + x2
POL(n__incr(x1)) = x1
POL(n__repItems(x1)) = x1
POL(n__take(x1, x2)) = 1 + x1 + x2
POL(n__zip(x1, x2)) = x1 + x2
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + 2·x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = 1 + 2·x1
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(zip(x1, x2)) = 2·x1 + 2·x2
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
tail(cons(X, XS)) → activate(XS)
take(X1, X2) → n__take(X1, X2)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(n__cons(x1, x2)) = 2·x1 + x2
POL(n__incr(x1)) = 2·x1
POL(n__repItems(x1)) = 2·x1
POL(n__take(x1, x2)) = 2 + x1 + 2·x2
POL(n__zip(x1, x2)) = 2 + 2·x1 + 2·x2
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + 2·x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = 2·x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(zip(x1, x2)) = 2 + 2·x1 + 2·x2
activate(n__take(X1, X2)) → take(X1, X2)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(activate(x1)) = 2·x1
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = 2·x1
POL(n__cons(x1, x2)) = x1 + x2
POL(n__incr(x1)) = x1
POL(n__repItems(x1)) = 1 + x1
POL(n__zip(x1, x2)) = 1 + x1 + x2
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2 + 2·x1
POL(s(x1)) = x1
POL(zip(x1, x2)) = 2 + 2·x1 + 2·x2
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = 2·x1
POL(n__cons(x1, x2)) = x1 + x2
POL(n__incr(x1)) = 2·x1
POL(n__repItems(x1)) = 2 + 2·x1
POL(n__zip(x1, x2)) = 2 + x1 + x2
POL(oddNs) = 0
POL(pairNs) = 0
POL(repItems(x1)) = 1 + x1
POL(s(x1)) = x1
POL(zip(x1, x2)) = 1 + x1 + x2
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__repItems(X)) → repItems(X)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
PAIRNS → CONS(0, n__incr(oddNs))
PAIRNS → ODDNS
ODDNS → INCR(pairNs)
ODDNS → PAIRNS
INCR(cons(X, XS)) → CONS(s(X), n__incr(activate(XS)))
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
From the DPs we obtained the following set of size-change graphs:
PAIRNS → ODDNS
ODDNS → PAIRNS
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X
PAIRNS → ODDNS
ODDNS → PAIRNS