(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(a__incr(x1)) = x1
POL(a__oddNs) = 0
POL(a__pairNs) = 0
POL(a__repItems(x1)) = 2 + 2·x1
POL(a__tail(x1)) = 2·x1
POL(a__take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(a__zip(x1, x2)) = 2 + 2·x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 1
POL(oddNs) = 0
POL(pair(x1, x2)) = 2·x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2 + 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = 2·x1
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(zip(x1, x2)) = 2 + 2·x1 + x2
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
a__take(0, XS) → nil
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__repItems(nil) → nil
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(a__incr(x1)) = 2·x1
POL(a__oddNs) = 0
POL(a__pairNs) = 0
POL(a__repItems(x1)) = 2·x1
POL(a__tail(x1)) = 2 + x1
POL(a__take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(a__zip(x1, x2)) = 2 + 2·x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = 2·x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = 2·x1
POL(tail(x1)) = 2 + x1
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(zip(x1, x2)) = 2 + 2·x1 + x2
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
a__tail(cons(X, XS)) → mark(XS)
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Q is empty.
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__ODDNS → A__INCR(a__pairNs)
A__ODDNS → A__PAIRNS
A__INCR(cons(X, XS)) → MARK(X)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(pairNs) → A__PAIRNS
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → A__ODDNS
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(tail(X)) → A__TAIL(mark(X))
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → A__REPITEMS(mark(X))
MARK(repItems(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
The TRS R consists of the following rules:
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__INCR(cons(X, XS)) → MARK(X)
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__ODDNS → A__INCR(a__pairNs)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → A__REPITEMS(mark(X))
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(repItems(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
The TRS R consists of the following rules:
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(tail(X)) → MARK(X)
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(repItems(X)) → MARK(X)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(A__INCR(x1)) = x1
POL(A__ODDNS) = 0
POL(A__REPITEMS(x1)) = 2 + x1
POL(A__TAKE(x1, x2)) = 2 + x1 + x2
POL(A__ZIP(x1, x2)) = 1 + x1 + x2
POL(MARK(x1)) = x1
POL(a__incr(x1)) = 2·x1
POL(a__oddNs) = 0
POL(a__pairNs) = 0
POL(a__repItems(x1)) = 2 + 2·x1
POL(a__tail(x1)) = 1 + x1
POL(a__take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(a__zip(x1, x2)) = 2 + 2·x1 + 2·x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2 + 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = 1 + x1
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(zip(x1, x2)) = 2 + 2·x1 + 2·x2
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__INCR(cons(X, XS)) → MARK(X)
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__ODDNS → A__INCR(a__pairNs)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(repItems(X)) → A__REPITEMS(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
The TRS R consists of the following rules:
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(incr(X)) → A__INCR(mark(X))
A__INCR(cons(X, XS)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__ODDNS → A__INCR(a__pairNs)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
The TRS R consists of the following rules:
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
MARK(oddNs) → A__ODDNS
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(A__INCR(x1)) = 1 + x1
POL(A__ODDNS) = 2
POL(MARK(x1)) = 1 + 2·x1
POL(a__incr(x1)) = x1
POL(a__oddNs) = 1
POL(a__pairNs) = 1
POL(a__repItems(x1)) = 1 + 2·x1
POL(a__tail(x1)) = x1
POL(a__take(x1, x2)) = 1 + x1 + x2
POL(a__zip(x1, x2)) = 1 + x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 2
POL(oddNs) = 1
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 1
POL(repItems(x1)) = 1 + 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(zip(x1, x2)) = 1 + x1 + x2
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(incr(X)) → A__INCR(mark(X))
A__INCR(cons(X, XS)) → MARK(X)
MARK(incr(X)) → MARK(X)
A__ODDNS → A__INCR(a__pairNs)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
The TRS R consists of the following rules:
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__INCR(cons(X, XS)) → MARK(X)
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
The TRS R consists of the following rules:
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
A__INCR(cons(X, XS)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__INCR(x1) ) = 2x1 + 1 |
POL( take(x1, x2) ) = 2x1 + 2x2 + 2 |
POL( a__take(x1, x2) ) = 2x1 + 2x2 + 2 |
POL( zip(x1, x2) ) = x1 + x2 + 2 |
POL( a__zip(x1, x2) ) = x1 + x2 + 2 |
POL( a__repItems(x1) ) = x1 |
POL( cons(x1, x2) ) = x1 + 1 |
POL( pair(x1, x2) ) = x1 + x2 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__incr(X) → incr(X)
a__oddNs → oddNs
a__oddNs → a__incr(a__pairNs)
a__pairNs → cons(0, incr(oddNs))
a__pairNs → pairNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
The TRS R consists of the following rules:
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(incr(X)) → MARK(X)
The TRS R consists of the following rules:
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(incr(X)) → MARK(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MARK(incr(X)) → MARK(X)
The graph contains the following edges 1 > 1
(24) YES