(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(and(tt, T)) → MARK(T)
ACTIVE(isNatIList(IL)) → MARK(isNatList(IL))
ACTIVE(isNatIList(IL)) → ISNATLIST(IL)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(s(N))) → MARK(isNat(N))
ACTIVE(isNat(s(N))) → ISNAT(N)
ACTIVE(isNat(length(L))) → MARK(isNatList(L))
ACTIVE(isNat(length(L))) → ISNATLIST(L)
ACTIVE(isNatIList(zeros)) → MARK(tt)
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
ACTIVE(isNatIList(cons(N, IL))) → AND(isNat(N), isNatIList(IL))
ACTIVE(isNatIList(cons(N, IL))) → ISNAT(N)
ACTIVE(isNatIList(cons(N, IL))) → ISNATILIST(IL)
ACTIVE(isNatList(nil)) → MARK(tt)
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
ACTIVE(isNatList(cons(N, L))) → AND(isNat(N), isNatList(L))
ACTIVE(isNatList(cons(N, L))) → ISNAT(N)
ACTIVE(isNatList(cons(N, L))) → ISNATLIST(L)
ACTIVE(isNatList(take(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
ACTIVE(isNatList(take(N, IL))) → AND(isNat(N), isNatIList(IL))
ACTIVE(isNatList(take(N, IL))) → ISNAT(N)
ACTIVE(isNatList(take(N, IL))) → ISNATILIST(IL)
ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(take(0, IL)) → MARK(uTake1(isNatIList(IL)))
ACTIVE(take(0, IL)) → UTAKE1(isNatIList(IL))
ACTIVE(take(0, IL)) → ISNATILIST(IL)
ACTIVE(uTake1(tt)) → MARK(nil)
ACTIVE(take(s(M), cons(N, IL))) → MARK(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
ACTIVE(take(s(M), cons(N, IL))) → UTAKE2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
ACTIVE(take(s(M), cons(N, IL))) → AND(isNat(M), and(isNat(N), isNatIList(IL)))
ACTIVE(take(s(M), cons(N, IL))) → ISNAT(M)
ACTIVE(take(s(M), cons(N, IL))) → AND(isNat(N), isNatIList(IL))
ACTIVE(take(s(M), cons(N, IL))) → ISNAT(N)
ACTIVE(take(s(M), cons(N, IL))) → ISNATILIST(IL)
ACTIVE(uTake2(tt, M, N, IL)) → MARK(cons(N, take(M, IL)))
ACTIVE(uTake2(tt, M, N, IL)) → CONS(N, take(M, IL))
ACTIVE(uTake2(tt, M, N, IL)) → TAKE(M, IL)
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
ACTIVE(length(cons(N, L))) → ULENGTH(and(isNat(N), isNatList(L)), L)
ACTIVE(length(cons(N, L))) → AND(isNat(N), isNatList(L))
ACTIVE(length(cons(N, L))) → ISNAT(N)
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
ACTIVE(uLength(tt, L)) → S(length(L))
ACTIVE(uLength(tt, L)) → LENGTH(L)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
MARK(and(X1, X2)) → AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(tt) → ACTIVE(tt)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(0) → ACTIVE(0)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(zeros) → ACTIVE(zeros)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(nil) → ACTIVE(nil)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → ACTIVE(uTake1(mark(X)))
MARK(uTake1(X)) → UTAKE1(mark(X))
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → ACTIVE(uTake2(mark(X1), X2, X3, X4))
MARK(uTake2(X1, X2, X3, X4)) → UTAKE2(mark(X1), X2, X3, X4)
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
MARK(uLength(X1, X2)) → ULENGTH(mark(X1), X2)
MARK(uLength(X1, X2)) → MARK(X1)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
ISNATILIST(mark(X)) → ISNATILIST(X)
ISNATILIST(active(X)) → ISNATILIST(X)
ISNATLIST(mark(X)) → ISNATLIST(X)
ISNATLIST(active(X)) → ISNATLIST(X)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
S(mark(X)) → S(X)
S(active(X)) → S(X)
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
UTAKE1(mark(X)) → UTAKE1(X)
UTAKE1(active(X)) → UTAKE1(X)
UTAKE2(mark(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, mark(X2), X3, X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, X2, mark(X3), X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, X2, X3, mark(X4)) → UTAKE2(X1, X2, X3, X4)
UTAKE2(active(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, active(X2), X3, X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, X2, active(X3), X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, X2, X3, active(X4)) → UTAKE2(X1, X2, X3, X4)
ULENGTH(mark(X1), X2) → ULENGTH(X1, X2)
ULENGTH(X1, mark(X2)) → ULENGTH(X1, X2)
ULENGTH(active(X1), X2) → ULENGTH(X1, X2)
ULENGTH(X1, active(X2)) → ULENGTH(X1, X2)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 12 SCCs with 44 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ULENGTH(X1, mark(X2)) → ULENGTH(X1, X2)
ULENGTH(mark(X1), X2) → ULENGTH(X1, X2)
ULENGTH(active(X1), X2) → ULENGTH(X1, X2)
ULENGTH(X1, active(X2)) → ULENGTH(X1, X2)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ULENGTH(X1, mark(X2)) → ULENGTH(X1, X2)
ULENGTH(mark(X1), X2) → ULENGTH(X1, X2)
ULENGTH(active(X1), X2) → ULENGTH(X1, X2)
ULENGTH(X1, active(X2)) → ULENGTH(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ULENGTH(X1, mark(X2)) → ULENGTH(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- ULENGTH(mark(X1), X2) → ULENGTH(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- ULENGTH(active(X1), X2) → ULENGTH(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- ULENGTH(X1, active(X2)) → ULENGTH(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
UTAKE2(X1, mark(X2), X3, X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(mark(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, X2, mark(X3), X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, X2, X3, mark(X4)) → UTAKE2(X1, X2, X3, X4)
UTAKE2(active(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, active(X2), X3, X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, X2, active(X3), X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, X2, X3, active(X4)) → UTAKE2(X1, X2, X3, X4)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
UTAKE2(X1, mark(X2), X3, X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(mark(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, X2, mark(X3), X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, X2, X3, mark(X4)) → UTAKE2(X1, X2, X3, X4)
UTAKE2(active(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, active(X2), X3, X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, X2, active(X3), X4) → UTAKE2(X1, X2, X3, X4)
UTAKE2(X1, X2, X3, active(X4)) → UTAKE2(X1, X2, X3, X4)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- UTAKE2(X1, mark(X2), X3, X4) → UTAKE2(X1, X2, X3, X4)
The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3, 4 >= 4
- UTAKE2(mark(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4
- UTAKE2(X1, X2, mark(X3), X4) → UTAKE2(X1, X2, X3, X4)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 >= 4
- UTAKE2(X1, X2, X3, mark(X4)) → UTAKE2(X1, X2, X3, X4)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 > 4
- UTAKE2(active(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4
- UTAKE2(X1, active(X2), X3, X4) → UTAKE2(X1, X2, X3, X4)
The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3, 4 >= 4
- UTAKE2(X1, X2, active(X3), X4) → UTAKE2(X1, X2, X3, X4)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 >= 4
- UTAKE2(X1, X2, X3, active(X4)) → UTAKE2(X1, X2, X3, X4)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 > 4
(14) YES
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
UTAKE1(active(X)) → UTAKE1(X)
UTAKE1(mark(X)) → UTAKE1(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
UTAKE1(active(X)) → UTAKE1(X)
UTAKE1(mark(X)) → UTAKE1(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- UTAKE1(active(X)) → UTAKE1(X)
The graph contains the following edges 1 > 1
- UTAKE1(mark(X)) → UTAKE1(X)
The graph contains the following edges 1 > 1
(19) YES
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- TAKE(X1, mark(X2)) → TAKE(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- TAKE(mark(X1), X2) → TAKE(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- TAKE(active(X1), X2) → TAKE(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- TAKE(X1, active(X2)) → TAKE(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(24) YES
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- CONS(X1, mark(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- CONS(mark(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(active(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(X1, active(X2)) → CONS(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(29) YES
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(active(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(active(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LENGTH(active(X)) → LENGTH(X)
The graph contains the following edges 1 > 1
- LENGTH(mark(X)) → LENGTH(X)
The graph contains the following edges 1 > 1
(34) YES
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(36) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(active(X)) → S(X)
S(mark(X)) → S(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(38) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- S(active(X)) → S(X)
The graph contains the following edges 1 > 1
- S(mark(X)) → S(X)
The graph contains the following edges 1 > 1
(39) YES
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(41) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(43) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ISNAT(active(X)) → ISNAT(X)
The graph contains the following edges 1 > 1
- ISNAT(mark(X)) → ISNAT(X)
The graph contains the following edges 1 > 1
(44) YES
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(active(X)) → ISNATLIST(X)
ISNATLIST(mark(X)) → ISNATLIST(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(46) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(active(X)) → ISNATLIST(X)
ISNATLIST(mark(X)) → ISNATLIST(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(48) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ISNATLIST(active(X)) → ISNATLIST(X)
The graph contains the following edges 1 > 1
- ISNATLIST(mark(X)) → ISNATLIST(X)
The graph contains the following edges 1 > 1
(49) YES
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(active(X)) → ISNATILIST(X)
ISNATILIST(mark(X)) → ISNATILIST(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(51) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(active(X)) → ISNATILIST(X)
ISNATILIST(mark(X)) → ISNATILIST(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(53) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ISNATILIST(active(X)) → ISNATILIST(X)
The graph contains the following edges 1 > 1
- ISNATILIST(mark(X)) → ISNATILIST(X)
The graph contains the following edges 1 > 1
(54) YES
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(56) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(57) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(58) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- AND(X1, mark(X2)) → AND(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- AND(mark(X1), X2) → AND(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- AND(active(X1), X2) → AND(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- AND(X1, active(X2)) → AND(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(59) YES
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(IL)) → MARK(isNatList(IL))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNat(s(N))) → MARK(isNat(N))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNat(length(L))) → MARK(isNatList(L))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(length(X)) → MARK(X)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(isNatList(take(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(take(0, IL)) → MARK(uTake1(isNatIList(IL)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → ACTIVE(uTake1(mark(X)))
ACTIVE(take(s(M), cons(N, IL))) → MARK(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → ACTIVE(uTake2(mark(X1), X2, X3, X4))
ACTIVE(uTake2(tt, M, N, IL)) → MARK(cons(N, take(M, IL)))
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
MARK(uLength(X1, X2)) → MARK(X1)
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(61) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(length(X)) → MARK(X)
ACTIVE(take(0, IL)) → MARK(uTake1(isNatIList(IL)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
MARK(uLength(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = 2x1 + 1 |
POL( and(x1, x2) ) = x1 + 2x2 |
POL( cons(x1, x2) ) = x1 + x2 |
POL( length(x1) ) = 2x1 + 2 |
POL( take(x1, x2) ) = x1 + x2 + 2 |
POL( uLength(x1, x2) ) = 2x1 + 2x2 + 2 |
POL( uTake1(x1) ) = 2x1 + 1 |
POL( uTake2(x1, ..., x4) ) = x1 + x2 + x3 + x4 + 2 |
POL( isNatIList(x1) ) = 0 |
POL( MARK(x1) ) = 2x1 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(IL)) → MARK(isNatList(IL))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNat(s(N))) → MARK(isNat(N))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNat(length(L))) → MARK(isNatList(L))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(isNatList(take(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(uTake1(X)) → ACTIVE(uTake1(mark(X)))
ACTIVE(take(s(M), cons(N, IL))) → MARK(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
MARK(uTake2(X1, X2, X3, X4)) → ACTIVE(uTake2(mark(X1), X2, X3, X4))
ACTIVE(uTake2(tt, M, N, IL)) → MARK(cons(N, take(M, IL)))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(63) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(uTake2(tt, M, N, IL)) → MARK(cons(N, take(M, IL)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = 2x1 + 2 |
POL( and(x1, x2) ) = 2x1 + x2 |
POL( cons(x1, x2) ) = x1 + 1 |
POL( take(x1, x2) ) = x1 + x2 + 1 |
POL( uLength(x1, x2) ) = 1 |
POL( uTake2(x1, ..., x4) ) = 2x1 + x2 + x3 + 2 |
POL( isNatIList(x1) ) = 0 |
POL( MARK(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
(64) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(IL)) → MARK(isNatList(IL))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNat(s(N))) → MARK(isNat(N))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNat(length(L))) → MARK(isNatList(L))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(isNatList(take(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(uTake1(X)) → ACTIVE(uTake1(mark(X)))
ACTIVE(take(s(M), cons(N, IL))) → MARK(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
MARK(uTake2(X1, X2, X3, X4)) → ACTIVE(uTake2(mark(X1), X2, X3, X4))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(65) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(isNat(length(L))) → MARK(isNatList(L))
ACTIVE(isNatList(take(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = x1 + 1 |
POL( and(x1, x2) ) = 2x1 + x2 |
POL( cons(x1, x2) ) = x1 + x2 |
POL( length(x1) ) = 2x1 + 2 |
POL( take(x1, x2) ) = 2x1 + 2x2 + 1 |
POL( uLength(x1, x2) ) = 2x2 + 2 |
POL( uTake2(x1, ..., x4) ) = 2x2 + x3 + 2x4 + 1 |
POL( isNatIList(x1) ) = 2x1 + 1 |
POL( isNatList(x1) ) = 2x1 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
(66) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(IL)) → MARK(isNatList(IL))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNat(s(N))) → MARK(isNat(N))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(uTake1(X)) → ACTIVE(uTake1(mark(X)))
ACTIVE(take(s(M), cons(N, IL))) → MARK(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
MARK(uTake2(X1, X2, X3, X4)) → ACTIVE(uTake2(mark(X1), X2, X3, X4))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(67) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(uTake1(X)) → ACTIVE(uTake1(mark(X)))
MARK(uTake2(X1, X2, X3, X4)) → ACTIVE(uTake2(mark(X1), X2, X3, X4))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( s(x1) ) = max{0, -2} |
POL( uLength(x1, x2) ) = 2 |
POL( uTake1(x1) ) = max{0, -2} |
POL( uTake2(x1, ..., x4) ) = 0 |
POL( mark(x1) ) = max{0, -2} |
POL( active(x1) ) = max{0, x1 - 2} |
POL( isNatIList(x1) ) = 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
(68) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(IL)) → MARK(isNatList(IL))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNat(s(N))) → MARK(isNat(N))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(take(s(M), cons(N, IL))) → MARK(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(69) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(take(s(M), cons(N, IL))) → MARK(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = 2x1 + 2 |
POL( and(x1, x2) ) = x1 + x2 |
POL( cons(x1, x2) ) = x1 + 2 |
POL( take(x1, x2) ) = x2 + 1 |
POL( uLength(x1, x2) ) = 1 |
POL( isNatIList(x1) ) = 0 |
POL( uTake2(x1, ..., x4) ) = 2x1 + x3 + 2 |
POL( MARK(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(IL)) → MARK(isNatList(IL))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNat(s(N))) → MARK(isNat(N))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(71) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(isNatIList(IL)) → MARK(isNatList(IL))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = x1 + 1 |
POL( and(x1, x2) ) = x1 + x2 |
POL( cons(x1, x2) ) = x1 + x2 |
POL( take(x1, x2) ) = x1 + x2 + 2 |
POL( uLength(x1, x2) ) = 2x2 |
POL( isNatIList(x1) ) = 2x1 + 1 |
POL( isNatList(x1) ) = 2x1 |
POL( uTake2(x1, ..., x4) ) = x2 + x3 + x4 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
(72) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNat(s(N))) → MARK(isNat(N))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(73) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( cons(x1, x2) ) = max{0, -2} |
POL( uLength(x1, x2) ) = 1 |
POL( mark(x1) ) = max{0, -2} |
POL( active(x1) ) = x1 + 2 |
POL( isNatIList(x1) ) = 1 |
POL( uTake1(x1) ) = 2x1 + 2 |
POL( uTake2(x1, ..., x4) ) = x1 + x2 + x3 + x4 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
(74) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNat(s(N))) → MARK(isNat(N))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(75) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
ACTIVE(isNat(s(N))) → MARK(isNat(N))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(77) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = x1 + 2 |
POL( and(x1, x2) ) = x1 + 2x2 |
POL( take(x1, x2) ) = x1 + 2x2 + 2 |
POL( uLength(x1, x2) ) = 0 |
POL( isNatIList(x1) ) = 0 |
POL( uTake1(x1) ) = max{0, -2} |
POL( uTake2(x1, ..., x4) ) = 2 |
POL( MARK(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
(78) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
ACTIVE(isNat(s(N))) → MARK(isNat(N))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(79) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(and(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVE(x1)) = | -I | + | 1A | · | x1 |
POL(and(x1, x2)) = | 5A | + | 1A | · | x1 | + | 0A | · | x2 |
POL(MARK(x1)) = | 5A | + | 1A | · | x1 |
POL(mark(x1)) = | 4A | + | 0A | · | x1 |
POL(isNat(x1)) = | 4A | + | 3A | · | x1 |
POL(isNatIList(x1)) = | 5A | + | 5A | · | x1 |
POL(cons(x1, x2)) = | 4A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(isNatList(x1)) = | 5A | + | 4A | · | x1 |
POL(length(x1)) = | 5A | + | 1A | · | x1 |
POL(uLength(x1, x2)) = | 5A | + | -I | · | x1 | + | 1A | · | x2 |
POL(active(x1)) = | 4A | + | 0A | · | x1 |
POL(take(x1, x2)) = | 5A | + | 1A | · | x1 | + | 1A | · | x2 |
POL(uTake1(x1)) = | 5A | + | -I | · | x1 |
POL(uTake2(x1, x2, x3, x4)) = | 5A | + | -I | · | x1 | + | 1A | · | x2 | + | 1A | · | x3 | + | 1A | · | x4 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
(80) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
ACTIVE(isNat(s(N))) → MARK(isNat(N))
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(81) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(isNat(s(N))) → MARK(isNat(N))
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVE(x1)) = | 3A | + | 3A | · | x1 |
POL(and(x1, x2)) = | 2A | + | -I | · | x1 | + | 0A | · | x2 |
POL(MARK(x1)) = | 3A | + | 3A | · | x1 |
POL(mark(x1)) = | 2A | + | 0A | · | x1 |
POL(isNat(x1)) = | -I | + | 5A | · | x1 |
POL(isNatIList(x1)) = | 2A | + | 2A | · | x1 |
POL(cons(x1, x2)) = | -I | + | -I | · | x1 | + | 1A | · | x2 |
POL(isNatList(x1)) = | 2A | + | 1A | · | x1 |
POL(length(x1)) = | 4A | + | 2A | · | x1 |
POL(uLength(x1, x2)) = | 4A | + | 2A | · | x1 | + | 3A | · | x2 |
POL(active(x1)) = | 2A | + | 0A | · | x1 |
POL(take(x1, x2)) = | 4A | + | 2A | · | x1 | + | 1A | · | x2 |
POL(uTake1(x1)) = | 1A | + | -I | · | x1 |
POL(uTake2(x1, x2, x3, x4)) = | 5A | + | 0A | · | x1 | + | 3A | · | x2 | + | -I | · | x3 | + | 2A | · | x4 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
(82) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(83) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(uLength(tt, L)) → MARK(s(length(L)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = x1 + 2 |
POL( and(x1, x2) ) = x1 + 2x2 |
POL( uLength(x1, x2) ) = x1 + 1 |
POL( isNatIList(x1) ) = 0 |
POL( cons(x1, x2) ) = 2x1 + x2 |
POL( take(x1, x2) ) = x2 + 2 |
POL( uTake1(x1) ) = max{0, -2} |
POL( uTake2(x1, ..., x4) ) = 2x3 + x4 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
(84) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(85) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(length(cons(N, L))) → MARK(uLength(and(isNat(N), isNatList(L)), L))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = x1 + 2 |
POL( length(x1) ) = x1 + 2 |
POL( uLength(x1, x2) ) = 1 |
POL( isNatIList(x1) ) = 1 |
POL( take(x1, x2) ) = 2x1 + 2x2 |
POL( uTake1(x1) ) = 2x1 + 2 |
POL( uTake2(x1, ..., x4) ) = 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
length(active(X)) → length(X)
length(mark(X)) → length(X)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
(86) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(87) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(isNat(X)) → ACTIVE(isNat(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = x1 + 2 |
POL( uLength(x1, x2) ) = max{0, -2} |
POL( isNatIList(x1) ) = 0 |
POL( cons(x1, x2) ) = x1 + 2 |
POL( take(x1, x2) ) = x1 + 2x2 + 2 |
POL( uTake2(x1, ..., x4) ) = 2x2 + 2x3 + 2 |
POL( MARK(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
(88) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(89) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(length(X)) → ACTIVE(length(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = x1 + 2 |
POL( and(x1, x2) ) = x1 + 2x2 |
POL( uLength(x1, x2) ) = max{0, -2} |
POL( isNatIList(x1) ) = 0 |
POL( uTake2(x1, ..., x4) ) = 2 |
POL( MARK(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
(90) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(91) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(uLength(X1, X2)) → ACTIVE(uLength(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ACTIVE(x1) ) = x1 + 2 |
POL( and(x1, x2) ) = x1 + 2x2 |
POL( uLength(x1, x2) ) = 1 |
POL( isNatIList(x1) ) = 0 |
POL( take(x1, x2) ) = x1 + x2 |
POL( uTake2(x1, ..., x4) ) = 2 |
POL( MARK(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
s(active(X)) → s(X)
s(mark(X)) → s(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
(92) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(93) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(isNatList(cons(N, L))) → MARK(and(isNat(N), isNatList(L)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVE(x1)) = | 3A | + | 0A | · | x1 |
POL(and(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(MARK(x1)) = | 3A | + | 0A | · | x1 |
POL(mark(x1)) = | 2A | + | 0A | · | x1 |
POL(isNatIList(x1)) = | 5A | + | 4A | · | x1 |
POL(cons(x1, x2)) = | 1A | + | 0A | · | x1 | + | 1A | · | x2 |
POL(isNat(x1)) = | 5A | + | 1A | · | x1 |
POL(isNatList(x1)) = | 3A | + | 3A | · | x1 |
POL(active(x1)) = | 2A | + | 0A | · | x1 |
POL(length(x1)) = | 4A | + | 2A | · | x1 |
POL(take(x1, x2)) = | 3A | + | 0A | · | x1 | + | 1A | · | x2 |
POL(uTake1(x1)) = | 3A | + | -I | · | x1 |
POL(uTake2(x1, x2, x3, x4)) = | 4A | + | -I | · | x1 | + | 1A | · | x2 | + | 0A | · | x3 | + | 2A | · | x4 |
POL(uLength(x1, x2)) = | 3A | + | 0A | · | x1 | + | 3A | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
s(active(X)) → s(X)
s(mark(X)) → s(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
(94) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(95) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(isNatList(X)) → ACTIVE(isNatList(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( isNatIList(x1) ) = 2 |
POL( isNat(x1) ) = x1 + 1 |
POL( s(x1) ) = max{0, x1 - 1} |
POL( length(x1) ) = 2x1 + 2 |
POL( cons(x1, x2) ) = 2x1 + x2 + 2 |
POL( take(x1, x2) ) = max{0, x1 - 1} |
POL( uTake2(x1, ..., x4) ) = 2 |
POL( uLength(x1, x2) ) = 2x2 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
(96) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(97) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(and(tt, T)) → MARK(T)
MARK(and(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVE(x1)) = | 4A | + | 4A | · | x1 |
POL(and(x1, x2)) = | 2A | + | -I | · | x1 | + | 1A | · | x2 |
POL(MARK(x1)) = | 5A | + | 4A | · | x1 |
POL(mark(x1)) = | 1A | + | 0A | · | x1 |
POL(isNatIList(x1)) = | 3A | + | 3A | · | x1 |
POL(cons(x1, x2)) = | 1A | + | -I | · | x1 | + | 1A | · | x2 |
POL(isNat(x1)) = | -I | + | 1A | · | x1 |
POL(active(x1)) = | 1A | + | 0A | · | x1 |
POL(isNatList(x1)) = | 1A | + | 1A | · | x1 |
POL(length(x1)) = | 2A | + | 1A | · | x1 |
POL(take(x1, x2)) = | 4A | + | 2A | · | x1 | + | 3A | · | x2 |
POL(uTake1(x1)) = | 3A | + | -I | · | x1 |
POL(uTake2(x1, x2, x3, x4)) = | 5A | + | -I | · | x1 | + | 3A | · | x2 | + | -I | · | x3 | + | 4A | · | x4 |
POL(uLength(x1, x2)) = | 2A | + | 0A | · | x1 | + | 2A | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
active(and(tt, T)) → mark(T)
mark(isNatIList(X)) → active(isNatIList(X))
active(isNatIList(IL)) → mark(isNatList(IL))
mark(isNatList(X)) → active(isNatList(X))
active(isNat(s(N))) → mark(isNat(N))
mark(isNat(X)) → active(isNat(X))
active(isNat(length(L))) → mark(isNatList(L))
mark(s(X)) → active(s(mark(X)))
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(length(X)) → active(length(mark(X)))
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
mark(zeros) → active(zeros)
active(zeros) → mark(cons(0, zeros))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
mark(uTake1(X)) → active(uTake1(mark(X)))
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(tt) → active(tt)
mark(0) → active(0)
mark(nil) → active(nil)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
active(isNat(0)) → mark(tt)
active(isNatIList(zeros)) → mark(tt)
active(isNatList(nil)) → mark(tt)
active(uTake1(tt)) → mark(nil)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(active(X)) → uTake1(X)
uTake1(mark(X)) → uTake1(X)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
(98) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(99) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVE(isNatIList(cons(N, IL))) → MARK(and(isNat(N), isNatIList(IL)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(
x1) =
x1
and(
x1,
x2) =
and
ACTIVE(
x1) =
x1
isNatIList(
x1) =
isNatIList
Knuth-Bendix order [KBO] with precedence:
isNatIList > and
and weight map:
isNatIList=1
and=1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(active(X)) → isNatIList(X)
isNatIList(mark(X)) → isNatIList(X)
(100) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), mark(X2)))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
mark(and(X1, X2)) → active(and(mark(X1), mark(X2)))
mark(tt) → active(tt)
mark(isNatIList(X)) → active(isNatIList(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(nil) → active(nil)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(uTake1(X)) → active(uTake1(mark(X)))
mark(uTake2(X1, X2, X3, X4)) → active(uTake2(mark(X1), X2, X3, X4))
mark(uLength(X1, X2)) → active(uLength(mark(X1), X2))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
uTake1(mark(X)) → uTake1(X)
uTake1(active(X)) → uTake1(X)
uTake2(mark(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, mark(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, mark(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, mark(X4)) → uTake2(X1, X2, X3, X4)
uTake2(active(X1), X2, X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, active(X2), X3, X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, active(X3), X4) → uTake2(X1, X2, X3, X4)
uTake2(X1, X2, X3, active(X4)) → uTake2(X1, X2, X3, X4)
uLength(mark(X1), X2) → uLength(X1, X2)
uLength(X1, mark(X2)) → uLength(X1, X2)
uLength(active(X1), X2) → uLength(X1, X2)
uLength(X1, active(X2)) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(101) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(102) TRUE