YES Termination w.r.t. Q proof of Transformed_CSR_04_Ex4_DLMMU04_GM.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__AND(tt, T) → MARK(T)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__TAKE(0, IL) → A__UTAKE1(a__isNatIList(IL))
A__TAKE(0, IL) → A__ISNATILIST(IL)
A__TAKE(s(M), cons(N, IL)) → A__UTAKE2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL)))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(M)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(N)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
A__UTAKE2(tt, M, N, IL) → MARK(N)
A__LENGTH(cons(N, L)) → A__ULENGTH(a__and(a__isNat(N), a__isNatList(L)), L)
A__LENGTH(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__LENGTH(cons(N, L)) → A__ISNAT(N)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
A__ULENGTH(tt, L) → A__LENGTH(mark(L))
A__ULENGTH(tt, L) → MARK(L)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(zeros) → A__ZEROS
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → A__UTAKE1(mark(X))
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → A__UTAKE2(mark(X1), X2, X3, X4)
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
MARK(uLength(X1, X2)) → A__ULENGTH(mark(X1), X2)
MARK(uLength(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(length(X)) → A__LENGTH(mark(X))
A__LENGTH(cons(N, L)) → A__ULENGTH(a__and(a__isNat(N), a__isNatList(L)), L)
A__ULENGTH(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__LENGTH(cons(N, L)) → A__ISNAT(N)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
A__ULENGTH(tt, L) → MARK(L)
MARK(length(X)) → MARK(X)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(0, IL) → A__ISNATILIST(IL)
A__TAKE(s(M), cons(N, IL)) → A__UTAKE2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
A__UTAKE2(tt, M, N, IL) → MARK(N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → A__UTAKE2(mark(X1), X2, X3, X4)
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
MARK(uLength(X1, X2)) → A__ULENGTH(mark(X1), X2)
MARK(uLength(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL)))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(M)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(N)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


A__LENGTH(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__LENGTH(cons(N, L)) → A__ISNAT(N)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
A__ULENGTH(tt, L) → MARK(L)
MARK(length(X)) → MARK(X)
MARK(uLength(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = 2x2 + 1

POL( A__LENGTH(x1) ) = x1 + 2

POL( A__TAKE(x1, x2) ) = x1 + x2 + 1

POL( A__ULENGTH(x1, x2) ) = x2 + 2

POL( A__UTAKE2(x1, ..., x4) ) = x1 + x3 + 1

POL( mark(x1) ) = x1

POL( and(x1, x2) ) = 2x1 + 2x2

POL( a__and(x1, x2) ) = 2x1 + 2x2

POL( tt ) = 0

POL( isNatIList(x1) ) = 0

POL( a__isNatIList(x1) ) = 0

POL( a__isNatList(x1) ) = 0

POL( cons(x1, x2) ) = 2x1 + x2

POL( a__isNat(x1) ) = 0

POL( take(x1, x2) ) = x1 + x2

POL( isNatList(x1) ) = 0

POL( isNat(x1) ) = 0

POL( s(x1) ) = x1

POL( length(x1) ) = x1 + 1

POL( a__length(x1) ) = x1 + 1

POL( zeros ) = 0

POL( a__zeros ) = 0

POL( a__take(x1, x2) ) = x1 + x2

POL( uTake1(x1) ) = x1

POL( a__uTake1(x1) ) = x1

POL( uTake2(x1, ..., x4) ) = x1 + x2 + 2x3 + x4

POL( a__uTake2(x1, ..., x4) ) = x1 + x2 + 2x3 + x4

POL( uLength(x1, x2) ) = x1 + x2 + 1

POL( a__uLength(x1, x2) ) = x1 + x2 + 1

POL( 0 ) = 0

POL( nil ) = 0

POL( MARK(x1) ) = x1 + 1

POL( A__ISNATILIST(x1) ) = 1

POL( A__ISNATLIST(x1) ) = 1

POL( A__ISNAT(x1) ) = 1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__and(X1, X2) → and(X1, X2)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeroscons(0, zeros)
a__zeroszeros

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(length(X)) → A__LENGTH(mark(X))
A__LENGTH(cons(N, L)) → A__ULENGTH(a__and(a__isNat(N), a__isNatList(L)), L)
A__ULENGTH(tt, L) → A__LENGTH(mark(L))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(0, IL) → A__ISNATILIST(IL)
A__TAKE(s(M), cons(N, IL)) → A__UTAKE2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
A__UTAKE2(tt, M, N, IL) → MARK(N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → A__UTAKE2(mark(X1), X2, X3, X4)
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
MARK(uLength(X1, X2)) → A__ULENGTH(mark(X1), X2)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL)))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(M)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(N)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ULENGTH(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__ULENGTH(a__and(a__isNat(N), a__isNatList(L)), L)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


A__ULENGTH(tt, L) → A__LENGTH(mark(L))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__ULENGTH(x1, x2)) = 4A + 0A·x1 + 2A·x2

POL(tt) = 5A

POL(A__LENGTH(x1)) = 4A + 1A·x1

POL(mark(x1)) = 1A + 0A·x1

POL(cons(x1, x2)) = 1A + -I·x1 + 1A·x2

POL(a__and(x1, x2)) = 1A + -I·x1 + 0A·x2

POL(a__isNat(x1)) = 4A + 3A·x1

POL(a__isNatList(x1)) = 0A + 1A·x1

POL(and(x1, x2)) = 1A + -I·x1 + 0A·x2

POL(isNatIList(x1)) = 5A + 1A·x1

POL(a__isNatIList(x1)) = 5A + 1A·x1

POL(take(x1, x2)) = 5A + 4A·x1 + 3A·x2

POL(isNatList(x1)) = 0A + 1A·x1

POL(isNat(x1)) = 4A + 3A·x1

POL(s(x1)) = 5A + 1A·x1

POL(length(x1)) = 3A + 0A·x1

POL(a__length(x1)) = 3A + 0A·x1

POL(zeros) = 0A

POL(a__zeros) = 1A

POL(a__take(x1, x2)) = 5A + 4A·x1 + 3A·x2

POL(uTake1(x1)) = 2A + 1A·x1

POL(a__uTake1(x1)) = 2A + 1A·x1

POL(uTake2(x1, x2, x3, x4)) = 5A + 3A·x1 + 5A·x2 + -I·x3 + 4A·x4

POL(a__uTake2(x1, x2, x3, x4)) = 5A + 3A·x1 + 5A·x2 + -I·x3 + 4A·x4

POL(uLength(x1, x2)) = 3A + 0A·x1 + 1A·x2

POL(a__uLength(x1, x2)) = 3A + 0A·x1 + 1A·x2

POL(0) = 2A

POL(nil) = 5A

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__and(X1, X2) → and(X1, X2)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeroscons(0, zeros)
a__zeroszeros

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__LENGTH(cons(N, L)) → A__ULENGTH(a__and(a__isNat(N), a__isNatList(L)), L)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(0, IL) → A__ISNATILIST(IL)
A__TAKE(s(M), cons(N, IL)) → A__UTAKE2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
A__UTAKE2(tt, M, N, IL) → MARK(N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → A__UTAKE2(mark(X1), X2, X3, X4)
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL)))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(M)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(N)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(0, IL) → A__ISNATILIST(IL)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → A__UTAKE2(mark(X1), X2, X3, X4)
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = 2x2 + 1

POL( A__TAKE(x1, x2) ) = x1 + 2x2 + 1

POL( A__UTAKE2(x1, ..., x4) ) = 2x3 + 1

POL( mark(x1) ) = x1

POL( and(x1, x2) ) = x1 + x2

POL( a__and(x1, x2) ) = x1 + x2

POL( tt ) = 0

POL( isNatIList(x1) ) = 0

POL( a__isNatIList(x1) ) = 0

POL( a__isNatList(x1) ) = 0

POL( cons(x1, x2) ) = 2x1

POL( a__isNat(x1) ) = 0

POL( take(x1, x2) ) = x1 + 2x2 + 2

POL( isNatList(x1) ) = 0

POL( isNat(x1) ) = 0

POL( s(x1) ) = x1

POL( length(x1) ) = 1

POL( a__length(x1) ) = 1

POL( zeros ) = 2

POL( a__zeros ) = 2

POL( a__take(x1, x2) ) = x1 + 2x2 + 2

POL( uTake1(x1) ) = x1 + 1

POL( a__uTake1(x1) ) = x1 + 1

POL( uTake2(x1, ..., x4) ) = 2x1 + 2x3 + 2

POL( a__uTake2(x1, ..., x4) ) = 2x1 + 2x3 + 2

POL( uLength(x1, x2) ) = x1 + 1

POL( a__uLength(x1, x2) ) = x1 + 1

POL( 0 ) = 1

POL( nil ) = 1

POL( MARK(x1) ) = 2x1 + 1

POL( A__ISNATILIST(x1) ) = 1

POL( A__ISNATLIST(x1) ) = 1

POL( A__ISNAT(x1) ) = 1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__and(X1, X2) → and(X1, X2)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeroscons(0, zeros)
a__zeroszeros

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
A__TAKE(s(M), cons(N, IL)) → A__UTAKE2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
A__UTAKE2(tt, M, N, IL) → MARK(N)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL)))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(M)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(N)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 7 less nodes.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = x2 + 1

POL( mark(x1) ) = x1

POL( and(x1, x2) ) = 2x1 + 2x2

POL( a__and(x1, x2) ) = 2x1 + 2x2

POL( tt ) = 0

POL( isNatIList(x1) ) = 0

POL( a__isNatIList(x1) ) = 0

POL( a__isNatList(x1) ) = 0

POL( cons(x1, x2) ) = x1 + 1

POL( a__isNat(x1) ) = 0

POL( take(x1, x2) ) = x1 + x2

POL( isNatList(x1) ) = 0

POL( isNat(x1) ) = 0

POL( s(x1) ) = 2x1

POL( length(x1) ) = 0

POL( a__length(x1) ) = 0

POL( zeros ) = 1

POL( a__zeros ) = 1

POL( a__take(x1, x2) ) = x1 + x2

POL( uTake1(x1) ) = 0

POL( a__uTake1(x1) ) = 0

POL( uTake2(x1, ..., x4) ) = 2x2 + x3 + 1

POL( a__uTake2(x1, ..., x4) ) = 2x2 + x3 + 1

POL( uLength(x1, x2) ) = 0

POL( a__uLength(x1, x2) ) = max{0, -2}

POL( 0 ) = 0

POL( nil ) = 0

POL( MARK(x1) ) = x1 + 1

POL( A__ISNATILIST(x1) ) = 1

POL( A__ISNATLIST(x1) ) = 1

POL( A__ISNAT(x1) ) = 1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeroscons(0, zeros)
a__zeroszeros

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = x1 + x2

POL( mark(x1) ) = x1

POL( and(x1, x2) ) = x1 + x2

POL( a__and(x1, x2) ) = x1 + x2

POL( tt ) = 0

POL( isNatIList(x1) ) = 2x1 + 2

POL( a__isNatIList(x1) ) = 2x1 + 2

POL( a__isNatList(x1) ) = x1

POL( cons(x1, x2) ) = x1 + x2

POL( a__isNat(x1) ) = x1

POL( take(x1, x2) ) = x1 + 2x2 + 2

POL( isNatList(x1) ) = x1

POL( isNat(x1) ) = x1

POL( s(x1) ) = x1

POL( length(x1) ) = x1 + 2

POL( a__length(x1) ) = x1 + 2

POL( zeros ) = 1

POL( a__zeros ) = 1

POL( a__take(x1, x2) ) = x1 + 2x2 + 2

POL( uTake1(x1) ) = 0

POL( a__uTake1(x1) ) = max{0, -2}

POL( uTake2(x1, ..., x4) ) = x2 + x3 + 2x4 + 2

POL( a__uTake2(x1, ..., x4) ) = x2 + x3 + 2x4 + 2

POL( uLength(x1, x2) ) = x2 + 2

POL( a__uLength(x1, x2) ) = x2 + 2

POL( 0 ) = 0

POL( nil ) = 0

POL( MARK(x1) ) = x1

POL( A__ISNATILIST(x1) ) = 2x1 + 2

POL( A__ISNATLIST(x1) ) = x1

POL( A__ISNAT(x1) ) = x1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeroscons(0, zeros)
a__zeroszeros

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

(24) Complex Obligation (AND)

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNAT(s(N)) → A__ISNAT(N)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNAT(s(N)) → A__ISNAT(N)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • A__ISNAT(s(N)) → A__ISNAT(N)
    The graph contains the following edges 1 > 1

(29) YES

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = 2x2 + 2

POL( mark(x1) ) = x1

POL( and(x1, x2) ) = 2x1 + x2

POL( a__and(x1, x2) ) = 2x1 + x2

POL( tt ) = 0

POL( isNatIList(x1) ) = x1

POL( a__isNatIList(x1) ) = x1

POL( a__isNatList(x1) ) = x1

POL( cons(x1, x2) ) = 2x1 + x2

POL( a__isNat(x1) ) = x1

POL( take(x1, x2) ) = 2x1 + x2 + 2

POL( isNatList(x1) ) = x1

POL( isNat(x1) ) = x1

POL( s(x1) ) = x1

POL( length(x1) ) = x1 + 2

POL( a__length(x1) ) = x1 + 2

POL( zeros ) = 0

POL( a__zeros ) = 0

POL( a__take(x1, x2) ) = 2x1 + x2 + 2

POL( uTake1(x1) ) = 0

POL( a__uTake1(x1) ) = max{0, -2}

POL( uTake2(x1, ..., x4) ) = 2x2 + 2x3 + x4 + 2

POL( a__uTake2(x1, ..., x4) ) = 2x2 + 2x3 + x4 + 2

POL( uLength(x1, x2) ) = x2 + 2

POL( a__uLength(x1, x2) ) = x2 + 2

POL( 0 ) = 0

POL( nil ) = 0

POL( MARK(x1) ) = 2x1 + 2

POL( A__ISNATILIST(x1) ) = 2x1 + 2

POL( A__ISNATLIST(x1) ) = 2x1 + 2


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeroscons(0, zeros)
a__zeroszeros

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(and(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__AND(x1, x2)) = 4A + -I·x1 + 0A·x2

POL(tt) = 0A

POL(MARK(x1)) = 4A + 0A·x1

POL(and(x1, x2)) = 5A + 1A·x1 + 0A·x2

POL(mark(x1)) = -I + 0A·x1

POL(isNatIList(x1)) = 5A + 0A·x1

POL(A__ISNATILIST(x1)) = 5A + 0A·x1

POL(cons(x1, x2)) = -I + 1A·x1 + 0A·x2

POL(a__isNat(x1)) = 1A + 0A·x1

POL(a__isNatIList(x1)) = 5A + 0A·x1

POL(isNatList(x1)) = 5A + 0A·x1

POL(A__ISNATLIST(x1)) = 5A + 0A·x1

POL(a__isNatList(x1)) = 5A + 0A·x1

POL(s(x1)) = 2A + 0A·x1

POL(a__and(x1, x2)) = 5A + 1A·x1 + 0A·x2

POL(take(x1, x2)) = -I + 1A·x1 + 0A·x2

POL(isNat(x1)) = 1A + 0A·x1

POL(length(x1)) = 5A + 1A·x1

POL(a__length(x1)) = 5A + 1A·x1

POL(zeros) = 1A

POL(a__zeros) = 1A

POL(a__take(x1, x2)) = -I + 1A·x1 + 0A·x2

POL(uTake1(x1)) = 1A + -I·x1

POL(a__uTake1(x1)) = 1A + -I·x1

POL(uTake2(x1, x2, x3, x4)) = 3A + -I·x1 + 1A·x2 + 1A·x3 + 0A·x4

POL(a__uTake2(x1, x2, x3, x4)) = 3A + -I·x1 + 1A·x2 + 1A·x3 + 0A·x4

POL(uLength(x1, x2)) = 5A + 0A·x1 + 1A·x2

POL(a__uLength(x1, x2)) = 5A + 0A·x1 + 1A·x2

POL(0) = 0A

POL(nil) = 0A

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeroscons(0, zeros)
a__zeroszeros

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(and(X1, X2)) → MARK(X2)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = x2 + 2

POL( mark(x1) ) = x1 + 1

POL( and(x1, x2) ) = x2 + 1

POL( a__and(x1, x2) ) = x2 + 1

POL( tt ) = 2

POL( isNatIList(x1) ) = x1

POL( a__isNatIList(x1) ) = x1 + 1

POL( a__isNatList(x1) ) = x1 + 1

POL( cons(x1, x2) ) = x2 + 1

POL( a__isNat(x1) ) = x1 + 1

POL( take(x1, x2) ) = x2 + 1

POL( isNatList(x1) ) = x1

POL( isNat(x1) ) = x1

POL( s(x1) ) = x1

POL( length(x1) ) = x1

POL( a__length(x1) ) = x1

POL( zeros ) = 1

POL( a__zeros ) = 2

POL( a__take(x1, x2) ) = x2 + 1

POL( uTake1(x1) ) = 0

POL( a__uTake1(x1) ) = 1

POL( uTake2(x1, ..., x4) ) = x4 + 2

POL( a__uTake2(x1, ..., x4) ) = x4 + 2

POL( uLength(x1, x2) ) = x2 + 1

POL( a__uLength(x1, x2) ) = x2 + 1

POL( 0 ) = 2

POL( nil ) = 1

POL( MARK(x1) ) = x1 + 2

POL( A__ISNATILIST(x1) ) = x1 + 2

POL( A__ISNATLIST(x1) ) = x1 + 2


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeroscons(0, zeros)
a__zeroszeros

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = x2 + 1

POL( mark(x1) ) = x1 + 1

POL( and(x1, x2) ) = x2 + 2

POL( a__and(x1, x2) ) = x2 + 2

POL( tt ) = 1

POL( isNatIList(x1) ) = 2x1

POL( a__isNatIList(x1) ) = 2x1 + 1

POL( a__isNatList(x1) ) = 2x1 + 1

POL( cons(x1, x2) ) = x2 + 1

POL( a__isNat(x1) ) = 2x1 + 2

POL( take(x1, x2) ) = x2 + 1

POL( isNatList(x1) ) = 2x1

POL( isNat(x1) ) = 2x1 + 1

POL( s(x1) ) = x1

POL( length(x1) ) = x1 + 1

POL( a__length(x1) ) = x1 + 1

POL( zeros ) = 0

POL( a__zeros ) = 1

POL( a__take(x1, x2) ) = x2 + 1

POL( uTake1(x1) ) = 0

POL( a__uTake1(x1) ) = max{0, -2}

POL( uTake2(x1, ..., x4) ) = x4 + 2

POL( a__uTake2(x1, ..., x4) ) = x4 + 2

POL( uLength(x1, x2) ) = x2 + 1

POL( a__uLength(x1, x2) ) = x2 + 2

POL( 0 ) = 0

POL( nil ) = 0

POL( MARK(x1) ) = x1 + 1

POL( A__ISNATILIST(x1) ) = 2x1

POL( A__ISNATLIST(x1) ) = 2x1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeroscons(0, zeros)
a__zeroszeros

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__AND(tt, T) → MARK(T)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeroscons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeroszeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MARK(s(X)) → MARK(X)
    The graph contains the following edges 1 > 1

(44) YES