(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__AND(tt, T) → MARK(T)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__TAKE(0, IL) → A__UTAKE1(a__isNatIList(IL))
A__TAKE(0, IL) → A__ISNATILIST(IL)
A__TAKE(s(M), cons(N, IL)) → A__UTAKE2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL)))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(M)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(N)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
A__UTAKE2(tt, M, N, IL) → MARK(N)
A__LENGTH(cons(N, L)) → A__ULENGTH(a__and(a__isNat(N), a__isNatList(L)), L)
A__LENGTH(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__LENGTH(cons(N, L)) → A__ISNAT(N)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
A__ULENGTH(tt, L) → A__LENGTH(mark(L))
A__ULENGTH(tt, L) → MARK(L)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(zeros) → A__ZEROS
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → A__UTAKE1(mark(X))
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → A__UTAKE2(mark(X1), X2, X3, X4)
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
MARK(uLength(X1, X2)) → A__ULENGTH(mark(X1), X2)
MARK(uLength(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(length(X)) → A__LENGTH(mark(X))
A__LENGTH(cons(N, L)) → A__ULENGTH(a__and(a__isNat(N), a__isNatList(L)), L)
A__ULENGTH(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__LENGTH(cons(N, L)) → A__ISNAT(N)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
A__ULENGTH(tt, L) → MARK(L)
MARK(length(X)) → MARK(X)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(0, IL) → A__ISNATILIST(IL)
A__TAKE(s(M), cons(N, IL)) → A__UTAKE2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
A__UTAKE2(tt, M, N, IL) → MARK(N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → A__UTAKE2(mark(X1), X2, X3, X4)
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
MARK(uLength(X1, X2)) → A__ULENGTH(mark(X1), X2)
MARK(uLength(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL)))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(M)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(N)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
A__LENGTH(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__LENGTH(cons(N, L)) → A__ISNAT(N)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
A__ULENGTH(tt, L) → MARK(L)
MARK(length(X)) → MARK(X)
MARK(uLength(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = 2x2 + 1 |
POL( A__LENGTH(x1) ) = x1 + 2 |
POL( A__TAKE(x1, x2) ) = x1 + x2 + 1 |
POL( A__ULENGTH(x1, x2) ) = x2 + 2 |
POL( A__UTAKE2(x1, ..., x4) ) = x1 + x3 + 1 |
POL( and(x1, x2) ) = 2x1 + 2x2 |
POL( a__and(x1, x2) ) = 2x1 + 2x2 |
POL( isNatIList(x1) ) = 0 |
POL( a__isNatIList(x1) ) = 0 |
POL( a__isNatList(x1) ) = 0 |
POL( cons(x1, x2) ) = 2x1 + x2 |
POL( take(x1, x2) ) = x1 + x2 |
POL( length(x1) ) = x1 + 1 |
POL( a__length(x1) ) = x1 + 1 |
POL( a__take(x1, x2) ) = x1 + x2 |
POL( a__uTake1(x1) ) = x1 |
POL( uTake2(x1, ..., x4) ) = x1 + x2 + 2x3 + x4 |
POL( a__uTake2(x1, ..., x4) ) = x1 + x2 + 2x3 + x4 |
POL( uLength(x1, x2) ) = x1 + x2 + 1 |
POL( a__uLength(x1, x2) ) = x1 + x2 + 1 |
POL( A__ISNATILIST(x1) ) = 1 |
POL( A__ISNATLIST(x1) ) = 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__and(X1, X2) → and(X1, X2)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeros → cons(0, zeros)
a__zeros → zeros
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(length(X)) → A__LENGTH(mark(X))
A__LENGTH(cons(N, L)) → A__ULENGTH(a__and(a__isNat(N), a__isNatList(L)), L)
A__ULENGTH(tt, L) → A__LENGTH(mark(L))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(0, IL) → A__ISNATILIST(IL)
A__TAKE(s(M), cons(N, IL)) → A__UTAKE2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
A__UTAKE2(tt, M, N, IL) → MARK(N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → A__UTAKE2(mark(X1), X2, X3, X4)
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
MARK(uLength(X1, X2)) → A__ULENGTH(mark(X1), X2)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL)))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(M)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(N)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__ULENGTH(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__ULENGTH(a__and(a__isNat(N), a__isNatList(L)), L)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
A__ULENGTH(tt, L) → A__LENGTH(mark(L))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(A__ULENGTH(x1, x2)) = | 4A | + | 0A | · | x1 | + | 2A | · | x2 |
POL(A__LENGTH(x1)) = | 4A | + | 1A | · | x1 |
POL(mark(x1)) = | 1A | + | 0A | · | x1 |
POL(cons(x1, x2)) = | 1A | + | -I | · | x1 | + | 1A | · | x2 |
POL(a__and(x1, x2)) = | 1A | + | -I | · | x1 | + | 0A | · | x2 |
POL(a__isNat(x1)) = | 4A | + | 3A | · | x1 |
POL(a__isNatList(x1)) = | 0A | + | 1A | · | x1 |
POL(and(x1, x2)) = | 1A | + | -I | · | x1 | + | 0A | · | x2 |
POL(isNatIList(x1)) = | 5A | + | 1A | · | x1 |
POL(a__isNatIList(x1)) = | 5A | + | 1A | · | x1 |
POL(take(x1, x2)) = | 5A | + | 4A | · | x1 | + | 3A | · | x2 |
POL(isNatList(x1)) = | 0A | + | 1A | · | x1 |
POL(isNat(x1)) = | 4A | + | 3A | · | x1 |
POL(length(x1)) = | 3A | + | 0A | · | x1 |
POL(a__length(x1)) = | 3A | + | 0A | · | x1 |
POL(a__take(x1, x2)) = | 5A | + | 4A | · | x1 | + | 3A | · | x2 |
POL(uTake1(x1)) = | 2A | + | 1A | · | x1 |
POL(a__uTake1(x1)) = | 2A | + | 1A | · | x1 |
POL(uTake2(x1, x2, x3, x4)) = | 5A | + | 3A | · | x1 | + | 5A | · | x2 | + | -I | · | x3 | + | 4A | · | x4 |
POL(a__uTake2(x1, x2, x3, x4)) = | 5A | + | 3A | · | x1 | + | 5A | · | x2 | + | -I | · | x3 | + | 4A | · | x4 |
POL(uLength(x1, x2)) = | 3A | + | 0A | · | x1 | + | 1A | · | x2 |
POL(a__uLength(x1, x2)) = | 3A | + | 0A | · | x1 | + | 1A | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__and(X1, X2) → and(X1, X2)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeros → cons(0, zeros)
a__zeros → zeros
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__LENGTH(cons(N, L)) → A__ULENGTH(a__and(a__isNat(N), a__isNatList(L)), L)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(13) TRUE
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(0, IL) → A__ISNATILIST(IL)
A__TAKE(s(M), cons(N, IL)) → A__UTAKE2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
A__UTAKE2(tt, M, N, IL) → MARK(N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → A__UTAKE2(mark(X1), X2, X3, X4)
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL)))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(M)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(N)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(0, IL) → A__ISNATILIST(IL)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(uTake1(X)) → MARK(X)
MARK(uTake2(X1, X2, X3, X4)) → A__UTAKE2(mark(X1), X2, X3, X4)
MARK(uTake2(X1, X2, X3, X4)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = 2x2 + 1 |
POL( A__TAKE(x1, x2) ) = x1 + 2x2 + 1 |
POL( A__UTAKE2(x1, ..., x4) ) = 2x3 + 1 |
POL( and(x1, x2) ) = x1 + x2 |
POL( a__and(x1, x2) ) = x1 + x2 |
POL( isNatIList(x1) ) = 0 |
POL( a__isNatIList(x1) ) = 0 |
POL( a__isNatList(x1) ) = 0 |
POL( cons(x1, x2) ) = 2x1 |
POL( take(x1, x2) ) = x1 + 2x2 + 2 |
POL( a__take(x1, x2) ) = x1 + 2x2 + 2 |
POL( uTake1(x1) ) = x1 + 1 |
POL( a__uTake1(x1) ) = x1 + 1 |
POL( uTake2(x1, ..., x4) ) = 2x1 + 2x3 + 2 |
POL( a__uTake2(x1, ..., x4) ) = 2x1 + 2x3 + 2 |
POL( uLength(x1, x2) ) = x1 + 1 |
POL( a__uLength(x1, x2) ) = x1 + 1 |
POL( MARK(x1) ) = 2x1 + 1 |
POL( A__ISNATILIST(x1) ) = 1 |
POL( A__ISNATLIST(x1) ) = 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__and(X1, X2) → and(X1, X2)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeros → cons(0, zeros)
a__zeros → zeros
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
A__TAKE(s(M), cons(N, IL)) → A__UTAKE2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
A__UTAKE2(tt, M, N, IL) → MARK(N)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL)))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(M)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__TAKE(s(M), cons(N, IL)) → A__ISNAT(N)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 7 less nodes.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = x2 + 1 |
POL( and(x1, x2) ) = 2x1 + 2x2 |
POL( a__and(x1, x2) ) = 2x1 + 2x2 |
POL( isNatIList(x1) ) = 0 |
POL( a__isNatIList(x1) ) = 0 |
POL( a__isNatList(x1) ) = 0 |
POL( cons(x1, x2) ) = x1 + 1 |
POL( take(x1, x2) ) = x1 + x2 |
POL( a__take(x1, x2) ) = x1 + x2 |
POL( uTake2(x1, ..., x4) ) = 2x2 + x3 + 1 |
POL( a__uTake2(x1, ..., x4) ) = 2x2 + x3 + 1 |
POL( uLength(x1, x2) ) = 0 |
POL( a__uLength(x1, x2) ) = max{0, -2} |
POL( A__ISNATILIST(x1) ) = 1 |
POL( A__ISNATLIST(x1) ) = 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeros → cons(0, zeros)
a__zeros → zeros
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
A__ISNATILIST(IL) → A__ISNATLIST(IL)
A__ISNAT(length(L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__ISNAT(N)
A__ISNATILIST(cons(N, IL)) → A__ISNAT(N)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = x1 + x2 |
POL( and(x1, x2) ) = x1 + x2 |
POL( a__and(x1, x2) ) = x1 + x2 |
POL( isNatIList(x1) ) = 2x1 + 2 |
POL( a__isNatIList(x1) ) = 2x1 + 2 |
POL( a__isNatList(x1) ) = x1 |
POL( cons(x1, x2) ) = x1 + x2 |
POL( take(x1, x2) ) = x1 + 2x2 + 2 |
POL( isNatList(x1) ) = x1 |
POL( length(x1) ) = x1 + 2 |
POL( a__length(x1) ) = x1 + 2 |
POL( a__take(x1, x2) ) = x1 + 2x2 + 2 |
POL( a__uTake1(x1) ) = max{0, -2} |
POL( uTake2(x1, ..., x4) ) = x2 + x3 + 2x4 + 2 |
POL( a__uTake2(x1, ..., x4) ) = x2 + x3 + 2x4 + 2 |
POL( uLength(x1, x2) ) = x2 + 2 |
POL( a__uLength(x1, x2) ) = x2 + 2 |
POL( A__ISNATILIST(x1) ) = 2x1 + 2 |
POL( A__ISNATLIST(x1) ) = x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeros → cons(0, zeros)
a__zeros → zeros
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNAT(N)
A__ISNAT(s(N)) → A__ISNAT(N)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.
(24) Complex Obligation (AND)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__ISNAT(s(N)) → A__ISNAT(N)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__ISNAT(s(N)) → A__ISNAT(N)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- A__ISNAT(s(N)) → A__ISNAT(N)
The graph contains the following edges 1 > 1
(29) YES
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
A__ISNATLIST(take(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(take(N, IL)) → A__ISNATILIST(IL)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = 2x2 + 2 |
POL( and(x1, x2) ) = 2x1 + x2 |
POL( a__and(x1, x2) ) = 2x1 + x2 |
POL( isNatIList(x1) ) = x1 |
POL( a__isNatIList(x1) ) = x1 |
POL( a__isNatList(x1) ) = x1 |
POL( cons(x1, x2) ) = 2x1 + x2 |
POL( take(x1, x2) ) = 2x1 + x2 + 2 |
POL( isNatList(x1) ) = x1 |
POL( length(x1) ) = x1 + 2 |
POL( a__length(x1) ) = x1 + 2 |
POL( a__take(x1, x2) ) = 2x1 + x2 + 2 |
POL( a__uTake1(x1) ) = max{0, -2} |
POL( uTake2(x1, ..., x4) ) = 2x2 + 2x3 + x4 + 2 |
POL( a__uTake2(x1, ..., x4) ) = 2x2 + 2x3 + x4 + 2 |
POL( uLength(x1, x2) ) = x2 + 2 |
POL( a__uLength(x1, x2) ) = x2 + 2 |
POL( MARK(x1) ) = 2x1 + 2 |
POL( A__ISNATILIST(x1) ) = 2x1 + 2 |
POL( A__ISNATLIST(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeros → cons(0, zeros)
a__zeros → zeros
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(and(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(A__AND(x1, x2)) = | 4A | + | -I | · | x1 | + | 0A | · | x2 |
POL(MARK(x1)) = | 4A | + | 0A | · | x1 |
POL(and(x1, x2)) = | 5A | + | 1A | · | x1 | + | 0A | · | x2 |
POL(mark(x1)) = | -I | + | 0A | · | x1 |
POL(isNatIList(x1)) = | 5A | + | 0A | · | x1 |
POL(A__ISNATILIST(x1)) = | 5A | + | 0A | · | x1 |
POL(cons(x1, x2)) = | -I | + | 1A | · | x1 | + | 0A | · | x2 |
POL(a__isNat(x1)) = | 1A | + | 0A | · | x1 |
POL(a__isNatIList(x1)) = | 5A | + | 0A | · | x1 |
POL(isNatList(x1)) = | 5A | + | 0A | · | x1 |
POL(A__ISNATLIST(x1)) = | 5A | + | 0A | · | x1 |
POL(a__isNatList(x1)) = | 5A | + | 0A | · | x1 |
POL(a__and(x1, x2)) = | 5A | + | 1A | · | x1 | + | 0A | · | x2 |
POL(take(x1, x2)) = | -I | + | 1A | · | x1 | + | 0A | · | x2 |
POL(isNat(x1)) = | 1A | + | 0A | · | x1 |
POL(length(x1)) = | 5A | + | 1A | · | x1 |
POL(a__length(x1)) = | 5A | + | 1A | · | x1 |
POL(a__take(x1, x2)) = | -I | + | 1A | · | x1 | + | 0A | · | x2 |
POL(uTake1(x1)) = | 1A | + | -I | · | x1 |
POL(a__uTake1(x1)) = | 1A | + | -I | · | x1 |
POL(uTake2(x1, x2, x3, x4)) = | 3A | + | -I | · | x1 | + | 1A | · | x2 | + | 1A | · | x3 | + | 0A | · | x4 |
POL(a__uTake2(x1, x2, x3, x4)) = | 3A | + | -I | · | x1 | + | 1A | · | x2 | + | 1A | · | x3 | + | 0A | · | x4 |
POL(uLength(x1, x2)) = | 5A | + | 0A | · | x1 | + | 1A | · | x2 |
POL(a__uLength(x1, x2)) = | 5A | + | 0A | · | x1 | + | 1A | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeros → cons(0, zeros)
a__zeros → zeros
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(and(X1, X2)) → MARK(X2)
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(and(X1, X2)) → MARK(X2)
A__ISNATILIST(cons(N, IL)) → A__ISNATILIST(IL)
A__ISNATLIST(cons(N, L)) → A__ISNATLIST(L)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = x2 + 2 |
POL( and(x1, x2) ) = x2 + 1 |
POL( a__and(x1, x2) ) = x2 + 1 |
POL( isNatIList(x1) ) = x1 |
POL( a__isNatIList(x1) ) = x1 + 1 |
POL( a__isNatList(x1) ) = x1 + 1 |
POL( cons(x1, x2) ) = x2 + 1 |
POL( a__isNat(x1) ) = x1 + 1 |
POL( take(x1, x2) ) = x2 + 1 |
POL( isNatList(x1) ) = x1 |
POL( a__length(x1) ) = x1 |
POL( a__take(x1, x2) ) = x2 + 1 |
POL( uTake2(x1, ..., x4) ) = x4 + 2 |
POL( a__uTake2(x1, ..., x4) ) = x4 + 2 |
POL( uLength(x1, x2) ) = x2 + 1 |
POL( a__uLength(x1, x2) ) = x2 + 1 |
POL( A__ISNATILIST(x1) ) = x1 + 2 |
POL( A__ISNATLIST(x1) ) = x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeros → cons(0, zeros)
a__zeros → zeros
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__AND(tt, T) → MARK(T)
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(37) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(and(X1, X2)) → A__AND(mark(X1), mark(X2))
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__AND(x1, x2) ) = x2 + 1 |
POL( and(x1, x2) ) = x2 + 2 |
POL( a__and(x1, x2) ) = x2 + 2 |
POL( isNatIList(x1) ) = 2x1 |
POL( a__isNatIList(x1) ) = 2x1 + 1 |
POL( a__isNatList(x1) ) = 2x1 + 1 |
POL( cons(x1, x2) ) = x2 + 1 |
POL( a__isNat(x1) ) = 2x1 + 2 |
POL( take(x1, x2) ) = x2 + 1 |
POL( isNatList(x1) ) = 2x1 |
POL( isNat(x1) ) = 2x1 + 1 |
POL( length(x1) ) = x1 + 1 |
POL( a__length(x1) ) = x1 + 1 |
POL( a__take(x1, x2) ) = x2 + 1 |
POL( a__uTake1(x1) ) = max{0, -2} |
POL( uTake2(x1, ..., x4) ) = x4 + 2 |
POL( a__uTake2(x1, ..., x4) ) = x4 + 2 |
POL( uLength(x1, x2) ) = x2 + 1 |
POL( a__uLength(x1, x2) ) = x2 + 2 |
POL( A__ISNATILIST(x1) ) = 2x1 |
POL( A__ISNATLIST(x1) ) = 2x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
a__and(tt, T) → mark(T)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNatIList(IL) → a__isNatList(IL)
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__isNatIList(zeros) → tt
a__isNatIList(X) → isNatIList(X)
a__isNatList(nil) → tt
a__isNatList(X) → isNatList(X)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
a__uTake1(tt) → nil
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
a__uLength(tt, L) → s(a__length(mark(L)))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__zeros → cons(0, zeros)
a__zeros → zeros
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__AND(tt, T) → MARK(T)
A__ISNATILIST(cons(N, IL)) → A__AND(a__isNat(N), a__isNatIList(IL))
A__ISNATLIST(cons(N, L)) → A__AND(a__isNat(N), a__isNatList(L))
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(39) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__and(tt, T) → mark(T)
a__isNatIList(IL) → a__isNatList(IL)
a__isNat(0) → tt
a__isNat(s(N)) → a__isNat(N)
a__isNat(length(L)) → a__isNatList(L)
a__isNatIList(zeros) → tt
a__isNatIList(cons(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__isNatList(nil) → tt
a__isNatList(cons(N, L)) → a__and(a__isNat(N), a__isNatList(L))
a__isNatList(take(N, IL)) → a__and(a__isNat(N), a__isNatIList(IL))
a__zeros → cons(0, zeros)
a__take(0, IL) → a__uTake1(a__isNatIList(IL))
a__uTake1(tt) → nil
a__take(s(M), cons(N, IL)) → a__uTake2(a__and(a__isNat(M), a__and(a__isNat(N), a__isNatIList(IL))), M, N, IL)
a__uTake2(tt, M, N, IL) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__uLength(a__and(a__isNat(N), a__isNatList(L)), L)
a__uLength(tt, L) → s(a__length(mark(L)))
mark(and(X1, X2)) → a__and(mark(X1), mark(X2))
mark(isNatIList(X)) → a__isNatIList(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(zeros) → a__zeros
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(uTake1(X)) → a__uTake1(mark(X))
mark(uTake2(X1, X2, X3, X4)) → a__uTake2(mark(X1), X2, X3, X4)
mark(uLength(X1, X2)) → a__uLength(mark(X1), X2)
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
a__and(X1, X2) → and(X1, X2)
a__isNatIList(X) → isNatIList(X)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__zeros → zeros
a__take(X1, X2) → take(X1, X2)
a__uTake1(X) → uTake1(X)
a__uTake2(X1, X2, X3, X4) → uTake2(X1, X2, X3, X4)
a__uLength(X1, X2) → uLength(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(41) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(43) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MARK(s(X)) → MARK(X)
The graph contains the following edges 1 > 1
(44) YES