(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(n__0, Y) → 01
MINUS(n__s(X), n__s(Y)) → MINUS(activate(X), activate(Y))
MINUS(n__s(X), n__s(Y)) → ACTIVATE(X)
MINUS(n__s(X), n__s(Y)) → ACTIVATE(Y)
GEQ(n__s(X), n__s(Y)) → GEQ(activate(X), activate(Y))
GEQ(n__s(X), n__s(Y)) → ACTIVATE(X)
GEQ(n__s(X), n__s(Y)) → ACTIVATE(Y)
DIV(s(X), n__s(Y)) → IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
DIV(s(X), n__s(Y)) → GEQ(X, activate(Y))
DIV(s(X), n__s(Y)) → ACTIVATE(Y)
IF(true, X, Y) → ACTIVATE(X)
IF(false, X, Y) → ACTIVATE(Y)
ACTIVATE(n__0) → 01
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__div(X1, X2)) → DIV(activate(X1), X2)
ACTIVATE(n__div(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__minus(X1, X2)) → MINUS(X1, X2)
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(n__s(X), n__s(Y)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__div(X1, X2)) → DIV(activate(X1), X2)
DIV(s(X), n__s(Y)) → IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
IF(true, X, Y) → ACTIVATE(X)
ACTIVATE(n__div(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__minus(X1, X2)) → MINUS(X1, X2)
MINUS(n__s(X), n__s(Y)) → MINUS(activate(X), activate(Y))
MINUS(n__s(X), n__s(Y)) → ACTIVATE(Y)
IF(false, X, Y) → ACTIVATE(Y)
DIV(s(X), n__s(Y)) → GEQ(X, activate(Y))
GEQ(n__s(X), n__s(Y)) → GEQ(activate(X), activate(Y))
GEQ(n__s(X), n__s(Y)) → ACTIVATE(X)
GEQ(n__s(X), n__s(Y)) → ACTIVATE(Y)
DIV(s(X), n__s(Y)) → ACTIVATE(Y)
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF(
false,
X,
Y) →
ACTIVATE(
Y) we obtained the following new rules [LPAR04]:
IF(false, n__s(n__div(n__minus(y_4, y_6), n__s(y_8))), n__0) → ACTIVATE(n__0) → IF(false, n__s(n__div(n__minus(y_4, y_6), n__s(y_8))), n__0) → ACTIVATE(n__0)
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(n__s(X), n__s(Y)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__div(X1, X2)) → DIV(activate(X1), X2)
DIV(s(X), n__s(Y)) → IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
IF(true, X, Y) → ACTIVATE(X)
ACTIVATE(n__div(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__minus(X1, X2)) → MINUS(X1, X2)
MINUS(n__s(X), n__s(Y)) → MINUS(activate(X), activate(Y))
MINUS(n__s(X), n__s(Y)) → ACTIVATE(Y)
DIV(s(X), n__s(Y)) → GEQ(X, activate(Y))
GEQ(n__s(X), n__s(Y)) → GEQ(activate(X), activate(Y))
GEQ(n__s(X), n__s(Y)) → ACTIVATE(X)
GEQ(n__s(X), n__s(Y)) → ACTIVATE(Y)
DIV(s(X), n__s(Y)) → ACTIVATE(Y)
IF(false, n__s(n__div(n__minus(y_4, y_6), n__s(y_8))), n__0) → ACTIVATE(n__0)
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__div(X1, X2)) → DIV(activate(X1), X2)
DIV(s(X), n__s(Y)) → IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
IF(true, X, Y) → ACTIVATE(X)
ACTIVATE(n__div(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__minus(X1, X2)) → MINUS(X1, X2)
MINUS(n__s(X), n__s(Y)) → MINUS(activate(X), activate(Y))
MINUS(n__s(X), n__s(Y)) → ACTIVATE(X)
MINUS(n__s(X), n__s(Y)) → ACTIVATE(Y)
DIV(s(X), n__s(Y)) → GEQ(X, activate(Y))
GEQ(n__s(X), n__s(Y)) → GEQ(activate(X), activate(Y))
GEQ(n__s(X), n__s(Y)) → ACTIVATE(X)
GEQ(n__s(X), n__s(Y)) → ACTIVATE(Y)
DIV(s(X), n__s(Y)) → ACTIVATE(Y)
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__div(X1, X2)) → ACTIVATE(X1)
DIV(s(X), n__s(Y)) → ACTIVATE(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVATE(x1)) = | 0A | + | 1A | · | x1 |
POL(n__s(x1)) = | -I | + | 0A | · | x1 |
POL(n__div(x1, x2)) = | 0A | + | 4A | · | x1 | + | 4A | · | x2 |
POL(DIV(x1, x2)) = | 1A | + | 5A | · | x1 | + | 5A | · | x2 |
POL(activate(x1)) = | -I | + | 0A | · | x1 |
POL(IF(x1, x2, x3)) = | -I | + | 0A | · | x1 | + | 1A | · | x2 | + | 1A | · | x3 |
POL(geq(x1, x2)) = | -I | + | 0A | · | x1 | + | 2A | · | x2 |
POL(n__minus(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(MINUS(x1, x2)) = | 0A | + | 1A | · | x1 | + | 1A | · | x2 |
POL(GEQ(x1, x2)) = | 1A | + | 1A | · | x1 | + | 1A | · | x2 |
POL(div(x1, x2)) = | 0A | + | 4A | · | x1 | + | 4A | · | x2 |
POL(if(x1, x2, x3)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 | + | 0A | · | x3 |
POL(minus(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
s(X) → n__s(X)
div(0, n__s(Y)) → 0
div(X1, X2) → n__div(X1, X2)
minus(n__0, Y) → 0
minus(X1, X2) → n__minus(X1, X2)
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
0 → n__0
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__div(X1, X2)) → DIV(activate(X1), X2)
DIV(s(X), n__s(Y)) → IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
IF(true, X, Y) → ACTIVATE(X)
ACTIVATE(n__minus(X1, X2)) → MINUS(X1, X2)
MINUS(n__s(X), n__s(Y)) → MINUS(activate(X), activate(Y))
MINUS(n__s(X), n__s(Y)) → ACTIVATE(X)
MINUS(n__s(X), n__s(Y)) → ACTIVATE(Y)
DIV(s(X), n__s(Y)) → GEQ(X, activate(Y))
GEQ(n__s(X), n__s(Y)) → GEQ(activate(X), activate(Y))
GEQ(n__s(X), n__s(Y)) → ACTIVATE(X)
GEQ(n__s(X), n__s(Y)) → ACTIVATE(Y)
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
GEQ(n__s(X), n__s(Y)) → ACTIVATE(X)
GEQ(n__s(X), n__s(Y)) → ACTIVATE(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(ACTIVATE(x1)) = | 0A | + | 0A | · | x1 |
POL(n__s(x1)) = | -I | + | 0A | · | x1 |
POL(n__div(x1, x2)) = | 5A | + | 3A | · | x1 | + | 3A | · | x2 |
POL(DIV(x1, x2)) = | 5A | + | 3A | · | x1 | + | 3A | · | x2 |
POL(activate(x1)) = | 1A | + | 0A | · | x1 |
POL(IF(x1, x2, x3)) = | 1A | + | -I | · | x1 | + | 0A | · | x2 | + | -I | · | x3 |
POL(geq(x1, x2)) = | 1A | + | -I | · | x1 | + | 0A | · | x2 |
POL(n__minus(x1, x2)) = | 1A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(MINUS(x1, x2)) = | 1A | + | 0A | · | x1 | + | 0A | · | x2 |
POL(GEQ(x1, x2)) = | 5A | + | 2A | · | x1 | + | 1A | · | x2 |
POL(div(x1, x2)) = | 5A | + | 3A | · | x1 | + | 3A | · | x2 |
POL(if(x1, x2, x3)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 | + | 2A | · | x3 |
POL(minus(x1, x2)) = | 1A | + | 0A | · | x1 | + | 0A | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
s(X) → n__s(X)
div(0, n__s(Y)) → 0
div(X1, X2) → n__div(X1, X2)
minus(n__0, Y) → 0
minus(X1, X2) → n__minus(X1, X2)
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
0 → n__0
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__div(X1, X2)) → DIV(activate(X1), X2)
DIV(s(X), n__s(Y)) → IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
IF(true, X, Y) → ACTIVATE(X)
ACTIVATE(n__minus(X1, X2)) → MINUS(X1, X2)
MINUS(n__s(X), n__s(Y)) → MINUS(activate(X), activate(Y))
MINUS(n__s(X), n__s(Y)) → ACTIVATE(X)
MINUS(n__s(X), n__s(Y)) → ACTIVATE(Y)
DIV(s(X), n__s(Y)) → GEQ(X, activate(Y))
GEQ(n__s(X), n__s(Y)) → GEQ(activate(X), activate(Y))
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(14) Complex Obligation (AND)
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GEQ(n__s(X), n__s(Y)) → GEQ(activate(X), activate(Y))
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
GEQ(n__s(X), n__s(Y)) → GEQ(activate(X), activate(Y))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( GEQ(x1, x2) ) = 2x2 + 2 |
POL( n__s(x1) ) = 2x1 + 1 |
POL( n__div(x1, x2) ) = x1 |
POL( if(x1, ..., x3) ) = max{0, x1 + x2 + 2x3 - 2} |
POL( geq(x1, x2) ) = 2x1 + 2 |
POL( n__minus(x1, x2) ) = max{0, -2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
s(X) → n__s(X)
div(0, n__s(Y)) → 0
div(X1, X2) → n__div(X1, X2)
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
minus(n__0, Y) → 0
minus(X1, X2) → n__minus(X1, X2)
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
0 → n__0
(17) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(18) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(19) YES
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__div(X1, X2)) → DIV(activate(X1), X2)
DIV(s(X), n__s(Y)) → IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
IF(true, X, Y) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__minus(X1, X2)) → MINUS(X1, X2)
MINUS(n__s(X), n__s(Y)) → MINUS(activate(X), activate(Y))
MINUS(n__s(X), n__s(Y)) → ACTIVATE(X)
MINUS(n__s(X), n__s(Y)) → ACTIVATE(Y)
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__minus(X1, X2)) → MINUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( IF(x1, ..., x3) ) = 2x1 + x2 |
POL( MINUS(x1, x2) ) = 2x1 + x2 + 2 |
POL( n__div(x1, x2) ) = 0 |
POL( n__minus(x1, x2) ) = 2x1 + x2 + 2 |
POL( activate(x1) ) = 2x1 |
POL( if(x1, ..., x3) ) = max{0, 2x1 + 2x2 + 2x3 - 2} |
POL( minus(x1, x2) ) = 2x1 + x2 + 2 |
POL( ACTIVATE(x1) ) = x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
s(X) → n__s(X)
div(0, n__s(Y)) → 0
div(X1, X2) → n__div(X1, X2)
minus(n__0, Y) → 0
minus(X1, X2) → n__minus(X1, X2)
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
0 → n__0
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__div(X1, X2)) → DIV(activate(X1), X2)
DIV(s(X), n__s(Y)) → IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
IF(true, X, Y) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
MINUS(n__s(X), n__s(Y)) → MINUS(activate(X), activate(Y))
MINUS(n__s(X), n__s(Y)) → ACTIVATE(X)
MINUS(n__s(X), n__s(Y)) → ACTIVATE(Y)
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.
(24) Complex Obligation (AND)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(X), n__s(Y)) → IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
IF(true, X, Y) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__div(X1, X2)) → DIV(activate(X1), X2)
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
DIV(s(X), n__s(Y)) → IF(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__div(X1, X2)) → DIV(activate(X1), X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( DIV(x1, x2) ) = 2x1 + 1 |
POL( IF(x1, ..., x3) ) = 2x2 + x3 + 2 |
POL( n__div(x1, x2) ) = 2x1 |
POL( n__minus(x1, x2) ) = 0 |
POL( activate(x1) ) = 2x1 |
POL( if(x1, ..., x3) ) = x1 + 2x2 + 2x3 |
POL( ACTIVATE(x1) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
s(X) → n__s(X)
div(0, n__s(Y)) → 0
div(X1, X2) → n__div(X1, X2)
minus(n__0, Y) → 0
minus(X1, X2) → n__minus(X1, X2)
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
0 → n__0
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, X, Y) → ACTIVATE(X)
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(29) TRUE
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(n__s(X), n__s(Y)) → MINUS(activate(X), activate(Y))
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MINUS(n__s(X), n__s(Y)) → MINUS(activate(X), activate(Y))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( MINUS(x1, x2) ) = 2x2 + 2 |
POL( n__s(x1) ) = 2x1 + 1 |
POL( n__div(x1, x2) ) = x1 |
POL( if(x1, ..., x3) ) = max{0, x1 + x2 + 2x3 - 2} |
POL( geq(x1, x2) ) = 2x1 + 2 |
POL( n__minus(x1, x2) ) = max{0, -2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
s(X) → n__s(X)
div(0, n__s(Y)) → 0
div(X1, X2) → n__div(X1, X2)
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
minus(n__0, Y) → 0
minus(X1, X2) → n__minus(X1, X2)
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
0 → n__0
(32) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
minus(n__0, Y) → 0
minus(n__s(X), n__s(Y)) → minus(activate(X), activate(Y))
geq(X, n__0) → true
geq(n__0, n__s(Y)) → false
geq(n__s(X), n__s(Y)) → geq(activate(X), activate(Y))
div(0, n__s(Y)) → 0
div(s(X), n__s(Y)) → if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
0 → n__0
s(X) → n__s(X)
div(X1, X2) → n__div(X1, X2)
minus(X1, X2) → n__minus(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(activate(X))
activate(n__div(X1, X2)) → div(activate(X1), X2)
activate(n__minus(X1, X2)) → minus(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(34) YES