YES Termination w.r.t. Q proof of Transformed_CSR_04_Ex26_Luc03b_L.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s) → s
dbl(0) → 0
dbl(s) → s
add(0, X) → X
add(s, Y) → s
first(0, X) → nil
first(s, cons(Y)) → cons(Y)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Knuth-Bendix order [KBO] with precedence:
dbl1 > first2 > nil > add2 > s > 0 > recip1 > sqr1 > terms1 > cons1

and weight map:

0=1
s=1
nil=2
terms_1=3
cons_1=1
recip_1=1
sqr_1=1
dbl_1=0
add_2=0
first_2=0

The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s) → s
dbl(0) → 0
dbl(s) → s
add(0, X) → X
add(s, Y) → s
first(0, X) → nil
first(s, cons(Y)) → cons(Y)


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) YES