(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
sqr(X) → n__sqr(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__sqr(X)) → sqr(activate(X))
activate(n__dbl(X)) → dbl(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TERMS(N) → SQR(N)
SQR(s(X)) → S(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
SQR(s(X)) → ACTIVATE(X)
DBL(s(X)) → S(n__s(n__dbl(activate(X))))
DBL(s(X)) → ACTIVATE(X)
ADD(s(X), Y) → S(n__add(activate(X), Y))
ADD(s(X), Y) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__terms(X)) → TERMS(activate(X))
ACTIVATE(n__terms(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__sqr(X)) → SQR(activate(X))
ACTIVATE(n__sqr(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → DBL(activate(X))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
The TRS R consists of the following rules:
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
sqr(X) → n__sqr(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__sqr(X)) → sqr(activate(X))
activate(n__dbl(X)) → dbl(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SQR(s(X)) → ACTIVATE(X)
ACTIVATE(n__terms(X)) → TERMS(activate(X))
TERMS(N) → SQR(N)
ACTIVATE(n__terms(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__sqr(X)) → SQR(activate(X))
ACTIVATE(n__sqr(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → DBL(activate(X))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
The TRS R consists of the following rules:
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
sqr(X) → n__sqr(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__sqr(X)) → sqr(activate(X))
activate(n__dbl(X)) → dbl(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(SQR(x1)) = | 0A | + | 1A | · | x1 |
POL(ACTIVATE(x1)) = | 0A | + | 0A | · | x1 |
POL(n__terms(x1)) = | -I | + | 5A | · | x1 |
POL(TERMS(x1)) = | 0A | + | 5A | · | x1 |
POL(activate(x1)) = | -I | + | 0A | · | x1 |
POL(n__add(x1, x2)) = | -I | + | 0A | · | x1 | + | 1A | · | x2 |
POL(ADD(x1, x2)) = | 0A | + | 0A | · | x1 | + | -I | · | x2 |
POL(n__sqr(x1)) = | -I | + | 3A | · | x1 |
POL(n__dbl(x1)) = | -I | + | 1A | · | x1 |
POL(DBL(x1)) = | 0A | + | 0A | · | x1 |
POL(n__first(x1, x2)) = | 1A | + | 2A | · | x1 | + | 0A | · | x2 |
POL(FIRST(x1, x2)) = | 0A | + | 2A | · | x1 | + | 0A | · | x2 |
POL(cons(x1, x2)) = | -I | + | -I | · | x1 | + | 0A | · | x2 |
POL(terms(x1)) = | -I | + | 5A | · | x1 |
POL(n__s(x1)) = | -I | + | 0A | · | x1 |
POL(add(x1, x2)) = | -I | + | 0A | · | x1 | + | 1A | · | x2 |
POL(sqr(x1)) = | -I | + | 3A | · | x1 |
POL(dbl(x1)) = | -I | + | 1A | · | x1 |
POL(first(x1, x2)) = | 1A | + | 2A | · | x1 | + | 0A | · | x2 |
POL(recip(x1)) = | -I | + | 4A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__sqr(X)) → sqr(activate(X))
activate(n__dbl(X)) → dbl(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
sqr(s(X)) → s(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
s(X) → n__s(X)
terms(X) → n__terms(X)
add(0, X) → X
add(X1, X2) → n__add(X1, X2)
sqr(0) → 0
sqr(X) → n__sqr(X)
dbl(0) → 0
dbl(X) → n__dbl(X)
first(0, X) → nil
first(X1, X2) → n__first(X1, X2)
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(s(X), Y) → s(n__add(activate(X), Y))
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SQR(s(X)) → ACTIVATE(X)
ACTIVATE(n__terms(X)) → TERMS(activate(X))
TERMS(N) → SQR(N)
ACTIVATE(n__terms(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__sqr(X)) → SQR(activate(X))
ACTIVATE(n__sqr(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → DBL(activate(X))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
The TRS R consists of the following rules:
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
sqr(X) → n__sqr(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__sqr(X)) → sqr(activate(X))
activate(n__dbl(X)) → dbl(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__terms(X)) → TERMS(activate(X))
TERMS(N) → SQR(N)
ACTIVATE(n__terms(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
POL(SQR(x1)) = | 2A | + | 1A | · | x1 |
POL(ACTIVATE(x1)) = | 2A | + | 0A | · | x1 |
POL(n__terms(x1)) = | 5A | + | 5A | · | x1 |
POL(TERMS(x1)) = | 3A | + | 4A | · | x1 |
POL(activate(x1)) = | -I | + | 0A | · | x1 |
POL(n__add(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(ADD(x1, x2)) = | 2A | + | 0A | · | x1 | + | -I | · | x2 |
POL(n__sqr(x1)) = | -I | + | 1A | · | x1 |
POL(n__dbl(x1)) = | -I | + | 1A | · | x1 |
POL(DBL(x1)) = | 2A | + | 0A | · | x1 |
POL(n__first(x1, x2)) = | -I | + | 5A | · | x1 | + | 0A | · | x2 |
POL(FIRST(x1, x2)) = | 2A | + | 5A | · | x1 | + | 0A | · | x2 |
POL(cons(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(terms(x1)) = | 5A | + | 5A | · | x1 |
POL(n__s(x1)) = | -I | + | 0A | · | x1 |
POL(add(x1, x2)) = | -I | + | 0A | · | x1 | + | 0A | · | x2 |
POL(sqr(x1)) = | -I | + | 1A | · | x1 |
POL(dbl(x1)) = | -I | + | 1A | · | x1 |
POL(first(x1, x2)) = | -I | + | 5A | · | x1 | + | 0A | · | x2 |
POL(recip(x1)) = | -I | + | 3A | · | x1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__sqr(X)) → sqr(activate(X))
activate(n__dbl(X)) → dbl(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
sqr(s(X)) → s(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
s(X) → n__s(X)
terms(X) → n__terms(X)
add(0, X) → X
add(X1, X2) → n__add(X1, X2)
sqr(0) → 0
sqr(X) → n__sqr(X)
dbl(0) → 0
dbl(X) → n__dbl(X)
first(0, X) → nil
first(X1, X2) → n__first(X1, X2)
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(s(X), Y) → s(n__add(activate(X), Y))
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SQR(s(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__sqr(X)) → SQR(activate(X))
ACTIVATE(n__sqr(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → DBL(activate(X))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
The TRS R consists of the following rules:
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
sqr(X) → n__sqr(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__sqr(X)) → sqr(activate(X))
activate(n__dbl(X)) → dbl(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
SQR(s(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__sqr(X)) → SQR(activate(X))
ACTIVATE(n__sqr(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → DBL(activate(X))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SQR(
x1) =
SQR(
x1)
s(
x1) =
s(
x1)
ACTIVATE(
x1) =
ACTIVATE(
x1)
n__add(
x1,
x2) =
n__add(
x1,
x2)
ADD(
x1,
x2) =
x1
activate(
x1) =
x1
n__sqr(
x1) =
n__sqr(
x1)
n__dbl(
x1) =
n__dbl(
x1)
DBL(
x1) =
DBL(
x1)
n__first(
x1,
x2) =
n__first(
x1,
x2)
FIRST(
x1,
x2) =
FIRST(
x1,
x2)
cons(
x1,
x2) =
x2
n__terms(
x1) =
n__terms
terms(
x1) =
terms
n__s(
x1) =
n__s(
x1)
add(
x1,
x2) =
add(
x1,
x2)
sqr(
x1) =
sqr(
x1)
dbl(
x1) =
dbl(
x1)
first(
x1,
x2) =
first(
x1,
x2)
0 =
0
nil =
nil
recip(
x1) =
recip
Recursive path order with status [RPO].
Quasi-Precedence:
[nsqr1, ndbl1, sqr1, dbl1] > SQR1 > [s1, ACTIVATE1, DBL1, FIRST2, ns1, recip]
[nsqr1, ndbl1, sqr1, dbl1] > [nadd2, add2] > [s1, ACTIVATE1, DBL1, FIRST2, ns1, recip]
[nsqr1, ndbl1, sqr1, dbl1] > 0 > nil > [s1, ACTIVATE1, DBL1, FIRST2, ns1, recip]
[nfirst2, first2] > nil > [s1, ACTIVATE1, DBL1, FIRST2, ns1, recip]
[nterms, terms] > [s1, ACTIVATE1, DBL1, FIRST2, ns1, recip]
Status:
SQR1: [1]
s1: [1]
ACTIVATE1: [1]
nadd2: multiset
nsqr1: [1]
ndbl1: [1]
DBL1: [1]
nfirst2: multiset
FIRST2: [2,1]
nterms: multiset
terms: multiset
ns1: [1]
add2: multiset
sqr1: [1]
dbl1: [1]
first2: multiset
0: multiset
nil: multiset
recip: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__sqr(X)) → sqr(activate(X))
activate(n__dbl(X)) → dbl(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
sqr(s(X)) → s(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
s(X) → n__s(X)
terms(X) → n__terms(X)
add(0, X) → X
add(X1, X2) → n__add(X1, X2)
sqr(0) → 0
sqr(X) → n__sqr(X)
dbl(0) → 0
dbl(X) → n__dbl(X)
first(0, X) → nil
first(X1, X2) → n__first(X1, X2)
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(s(X), Y) → s(n__add(activate(X), Y))
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD(s(X), Y) → ACTIVATE(X)
The TRS R consists of the following rules:
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
sqr(X) → n__sqr(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__sqr(X)) → sqr(activate(X))
activate(n__dbl(X)) → dbl(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(12) TRUE