0 QTRS
↳1 QTRS Reverse (⇔, 0 ms)
↳2 QTRS
↳3 DependencyPairsProof (⇔, 0 ms)
↳4 QDP
↳5 DependencyGraphProof (⇔, 0 ms)
↳6 AND
↳7 QDP
↳8 UsableRulesProof (⇔, 0 ms)
↳9 QDP
↳10 QDPSizeChangeProof (⇔, 0 ms)
↳11 YES
↳12 QDP
↳13 UsableRulesProof (⇔, 0 ms)
↳14 QDP
↳15 QDPSizeChangeProof (⇔, 0 ms)
↳16 YES
↳17 QDP
↳18 UsableRulesProof (⇔, 0 ms)
↳19 QDP
↳20 QDPSizeChangeProof (⇔, 0 ms)
↳21 YES
↳22 QDP
↳23 UsableRulesProof (⇔, 0 ms)
↳24 QDP
↳25 QDPOrderProof (⇔, 18 ms)
↳26 QDP
↳27 DependencyGraphProof (⇔, 0 ms)
↳28 AND
↳29 QDP
↳30 MRRProof (⇔, 0 ms)
↳31 QDP
↳32 PisEmptyProof (⇔, 0 ms)
↳33 YES
↳34 QDP
↳35 MRRProof (⇔, 0 ms)
↳36 QDP
↳37 PisEmptyProof (⇔, 0 ms)
↳38 YES
active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(X)) → g(proper(X))
proper(h(X)) → h(proper(X))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(X)) → ok(g(X))
h(ok(X)) → ok(h(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
g(active(X)) → h(mark(X))
c'(active(x)) → d'(mark(x))
d'(h(active(x))) → c'(g(mark(x)))
g(proper(X)) → proper(g(X))
h(proper(X)) → proper(h(X))
c'(proper(x)) → c'(ok(x))
d'(proper(x)) → d'(ok(x))
ok(g(X)) → g(ok(X))
ok(h(X)) → h(ok(X))
mark(top(X)) → proper(top(X))
ok(top(X)) → active(top(X))
G(active(X)) → H(mark(X))
G(active(X)) → MARK(X)
C'(active(x)) → D'(mark(x))
C'(active(x)) → MARK(x)
D'(h(active(x))) → C'(g(mark(x)))
D'(h(active(x))) → G(mark(x))
D'(h(active(x))) → MARK(x)
G(proper(X)) → G(X)
H(proper(X)) → H(X)
C'(proper(x)) → C'(ok(x))
C'(proper(x)) → OK(x)
D'(proper(x)) → D'(ok(x))
D'(proper(x)) → OK(x)
OK(g(X)) → G(ok(X))
OK(g(X)) → OK(X)
OK(h(X)) → H(ok(X))
OK(h(X)) → OK(X)
g(active(X)) → h(mark(X))
c'(active(x)) → d'(mark(x))
d'(h(active(x))) → c'(g(mark(x)))
g(proper(X)) → proper(g(X))
h(proper(X)) → proper(h(X))
c'(proper(x)) → c'(ok(x))
d'(proper(x)) → d'(ok(x))
ok(g(X)) → g(ok(X))
ok(h(X)) → h(ok(X))
mark(top(X)) → proper(top(X))
ok(top(X)) → active(top(X))
H(proper(X)) → H(X)
g(active(X)) → h(mark(X))
c'(active(x)) → d'(mark(x))
d'(h(active(x))) → c'(g(mark(x)))
g(proper(X)) → proper(g(X))
h(proper(X)) → proper(h(X))
c'(proper(x)) → c'(ok(x))
d'(proper(x)) → d'(ok(x))
ok(g(X)) → g(ok(X))
ok(h(X)) → h(ok(X))
mark(top(X)) → proper(top(X))
ok(top(X)) → active(top(X))
H(proper(X)) → H(X)
From the DPs we obtained the following set of size-change graphs:
G(proper(X)) → G(X)
g(active(X)) → h(mark(X))
c'(active(x)) → d'(mark(x))
d'(h(active(x))) → c'(g(mark(x)))
g(proper(X)) → proper(g(X))
h(proper(X)) → proper(h(X))
c'(proper(x)) → c'(ok(x))
d'(proper(x)) → d'(ok(x))
ok(g(X)) → g(ok(X))
ok(h(X)) → h(ok(X))
mark(top(X)) → proper(top(X))
ok(top(X)) → active(top(X))
G(proper(X)) → G(X)
From the DPs we obtained the following set of size-change graphs:
OK(h(X)) → OK(X)
OK(g(X)) → OK(X)
g(active(X)) → h(mark(X))
c'(active(x)) → d'(mark(x))
d'(h(active(x))) → c'(g(mark(x)))
g(proper(X)) → proper(g(X))
h(proper(X)) → proper(h(X))
c'(proper(x)) → c'(ok(x))
d'(proper(x)) → d'(ok(x))
ok(g(X)) → g(ok(X))
ok(h(X)) → h(ok(X))
mark(top(X)) → proper(top(X))
ok(top(X)) → active(top(X))
OK(h(X)) → OK(X)
OK(g(X)) → OK(X)
From the DPs we obtained the following set of size-change graphs:
D'(h(active(x))) → C'(g(mark(x)))
C'(active(x)) → D'(mark(x))
D'(proper(x)) → D'(ok(x))
C'(proper(x)) → C'(ok(x))
g(active(X)) → h(mark(X))
c'(active(x)) → d'(mark(x))
d'(h(active(x))) → c'(g(mark(x)))
g(proper(X)) → proper(g(X))
h(proper(X)) → proper(h(X))
c'(proper(x)) → c'(ok(x))
d'(proper(x)) → d'(ok(x))
ok(g(X)) → g(ok(X))
ok(h(X)) → h(ok(X))
mark(top(X)) → proper(top(X))
ok(top(X)) → active(top(X))
D'(h(active(x))) → C'(g(mark(x)))
C'(active(x)) → D'(mark(x))
D'(proper(x)) → D'(ok(x))
C'(proper(x)) → C'(ok(x))
ok(g(X)) → g(ok(X))
ok(h(X)) → h(ok(X))
ok(top(X)) → active(top(X))
h(proper(X)) → proper(h(X))
g(active(X)) → h(mark(X))
g(proper(X)) → proper(g(X))
mark(top(X)) → proper(top(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C'(active(x)) → D'(mark(x))
POL(C'(x1)) = x1
POL(D'(x1)) = 0
POL(active(x1)) = 1
POL(g(x1)) = 0
POL(h(x1)) = 0
POL(mark(x1)) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(top(x1)) = 1
g(active(X)) → h(mark(X))
g(proper(X)) → proper(g(X))
ok(g(X)) → g(ok(X))
ok(h(X)) → h(ok(X))
ok(top(X)) → active(top(X))
h(proper(X)) → proper(h(X))
D'(h(active(x))) → C'(g(mark(x)))
D'(proper(x)) → D'(ok(x))
C'(proper(x)) → C'(ok(x))
ok(g(X)) → g(ok(X))
ok(h(X)) → h(ok(X))
ok(top(X)) → active(top(X))
h(proper(X)) → proper(h(X))
g(active(X)) → h(mark(X))
g(proper(X)) → proper(g(X))
mark(top(X)) → proper(top(X))
C'(proper(x)) → C'(ok(x))
ok(g(X)) → g(ok(X))
ok(h(X)) → h(ok(X))
ok(top(X)) → active(top(X))
h(proper(X)) → proper(h(X))
g(active(X)) → h(mark(X))
g(proper(X)) → proper(g(X))
mark(top(X)) → proper(top(X))
C'(proper(x)) → C'(ok(x))
ok(g(X)) → g(ok(X))
POL(C'(x1)) = x1
POL(active(x1)) = x1
POL(g(x1)) = 3 + 3·x1
POL(h(x1)) = x1
POL(mark(x1)) = 3 + 3·x1
POL(ok(x1)) = 2·x1
POL(proper(x1)) = 3 + 3·x1
POL(top(x1)) = 2·x1
ok(h(X)) → h(ok(X))
ok(top(X)) → active(top(X))
h(proper(X)) → proper(h(X))
g(active(X)) → h(mark(X))
g(proper(X)) → proper(g(X))
mark(top(X)) → proper(top(X))
D'(proper(x)) → D'(ok(x))
ok(g(X)) → g(ok(X))
ok(h(X)) → h(ok(X))
ok(top(X)) → active(top(X))
h(proper(X)) → proper(h(X))
g(active(X)) → h(mark(X))
g(proper(X)) → proper(g(X))
mark(top(X)) → proper(top(X))
D'(proper(x)) → D'(ok(x))
ok(g(X)) → g(ok(X))
POL(D'(x1)) = x1
POL(active(x1)) = x1
POL(g(x1)) = 3 + 3·x1
POL(h(x1)) = x1
POL(mark(x1)) = 3 + 3·x1
POL(ok(x1)) = 2·x1
POL(proper(x1)) = 3 + 3·x1
POL(top(x1)) = 2·x1
ok(h(X)) → h(ok(X))
ok(top(X)) → active(top(X))
h(proper(X)) → proper(h(X))
g(active(X)) → h(mark(X))
g(proper(X)) → proper(g(X))
mark(top(X)) → proper(top(X))