(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(X), n__s(Y)) → EQ(activate(X), activate(Y))
EQ(n__s(X), n__s(Y)) → ACTIVATE(X)
EQ(n__s(X), n__s(Y)) → ACTIVATE(Y)
INF(X) → S(X)
TAKE(s(X), cons(Y, L)) → ACTIVATE(Y)
TAKE(s(X), cons(Y, L)) → ACTIVATE(X)
TAKE(s(X), cons(Y, L)) → ACTIVATE(L)
LENGTH(nil) → 01
LENGTH(cons(X, L)) → S(n__length(activate(L)))
LENGTH(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__0) → 01
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__inf(X)) → INF(X)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
ACTIVATE(n__length(X)) → LENGTH(X)
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 8 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(X), cons(Y, L)) → ACTIVATE(Y)
ACTIVATE(n__length(X)) → LENGTH(X)
LENGTH(cons(X, L)) → ACTIVATE(L)
TAKE(s(X), cons(Y, L)) → ACTIVATE(X)
TAKE(s(X), cons(Y, L)) → ACTIVATE(L)
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(X), cons(Y, L)) → ACTIVATE(Y)
ACTIVATE(n__length(X)) → LENGTH(X)
LENGTH(cons(X, L)) → ACTIVATE(L)
TAKE(s(X), cons(Y, L)) → ACTIVATE(X)
TAKE(s(X), cons(Y, L)) → ACTIVATE(L)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LENGTH(cons(X, L)) → ACTIVATE(L)
The graph contains the following edges 1 > 1
- ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
The graph contains the following edges 1 > 1, 1 > 2
- ACTIVATE(n__length(X)) → LENGTH(X)
The graph contains the following edges 1 > 1
- TAKE(s(X), cons(Y, L)) → ACTIVATE(Y)
The graph contains the following edges 2 > 1
- TAKE(s(X), cons(Y, L)) → ACTIVATE(X)
The graph contains the following edges 1 > 1
- TAKE(s(X), cons(Y, L)) → ACTIVATE(L)
The graph contains the following edges 2 > 1
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(X), n__s(Y)) → EQ(activate(X), activate(Y))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
X),
n__s(
Y)) →
EQ(
activate(
X),
activate(
Y)) at position [0] we obtained the following new rules [LPAR04]:
EQ(n__s(n__0), n__s(y1)) → EQ(0, activate(y1)) → EQ(n__s(n__0), n__s(y1)) → EQ(0, activate(y1))
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(s(x0), activate(y1)) → EQ(n__s(n__s(x0)), n__s(y1)) → EQ(s(x0), activate(y1))
EQ(n__s(n__inf(x0)), n__s(y1)) → EQ(inf(x0), activate(y1)) → EQ(n__s(n__inf(x0)), n__s(y1)) → EQ(inf(x0), activate(y1))
EQ(n__s(n__take(x0, x1)), n__s(y1)) → EQ(take(x0, x1), activate(y1)) → EQ(n__s(n__take(x0, x1)), n__s(y1)) → EQ(take(x0, x1), activate(y1))
EQ(n__s(n__length(x0)), n__s(y1)) → EQ(length(x0), activate(y1)) → EQ(n__s(n__length(x0)), n__s(y1)) → EQ(length(x0), activate(y1))
EQ(n__s(x0), n__s(y1)) → EQ(x0, activate(y1)) → EQ(n__s(x0), n__s(y1)) → EQ(x0, activate(y1))
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__0), n__s(y1)) → EQ(0, activate(y1))
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(s(x0), activate(y1))
EQ(n__s(n__inf(x0)), n__s(y1)) → EQ(inf(x0), activate(y1))
EQ(n__s(n__take(x0, x1)), n__s(y1)) → EQ(take(x0, x1), activate(y1))
EQ(n__s(n__length(x0)), n__s(y1)) → EQ(length(x0), activate(y1))
EQ(n__s(x0), n__s(y1)) → EQ(x0, activate(y1))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
n__0),
n__s(
y1)) →
EQ(
0,
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
EQ(n__s(n__0), n__s(y0)) → EQ(n__0, activate(y0)) → EQ(n__s(n__0), n__s(y0)) → EQ(n__0, activate(y0))
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(s(x0), activate(y1))
EQ(n__s(n__inf(x0)), n__s(y1)) → EQ(inf(x0), activate(y1))
EQ(n__s(n__take(x0, x1)), n__s(y1)) → EQ(take(x0, x1), activate(y1))
EQ(n__s(n__length(x0)), n__s(y1)) → EQ(length(x0), activate(y1))
EQ(n__s(x0), n__s(y1)) → EQ(x0, activate(y1))
EQ(n__s(n__0), n__s(y0)) → EQ(n__0, activate(y0))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(s(x0), activate(y1))
EQ(n__s(n__inf(x0)), n__s(y1)) → EQ(inf(x0), activate(y1))
EQ(n__s(n__take(x0, x1)), n__s(y1)) → EQ(take(x0, x1), activate(y1))
EQ(n__s(n__length(x0)), n__s(y1)) → EQ(length(x0), activate(y1))
EQ(n__s(x0), n__s(y1)) → EQ(x0, activate(y1))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
n__s(
x0)),
n__s(
y1)) →
EQ(
s(
x0),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1)) → EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__inf(x0)), n__s(y1)) → EQ(inf(x0), activate(y1))
EQ(n__s(n__take(x0, x1)), n__s(y1)) → EQ(take(x0, x1), activate(y1))
EQ(n__s(n__length(x0)), n__s(y1)) → EQ(length(x0), activate(y1))
EQ(n__s(x0), n__s(y1)) → EQ(x0, activate(y1))
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
n__inf(
x0)),
n__s(
y1)) →
EQ(
inf(
x0),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
EQ(n__s(n__inf(x0)), n__s(y1)) → EQ(cons(x0, n__inf(s(x0))), activate(y1)) → EQ(n__s(n__inf(x0)), n__s(y1)) → EQ(cons(x0, n__inf(s(x0))), activate(y1))
EQ(n__s(n__inf(x0)), n__s(y1)) → EQ(n__inf(x0), activate(y1)) → EQ(n__s(n__inf(x0)), n__s(y1)) → EQ(n__inf(x0), activate(y1))
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__take(x0, x1)), n__s(y1)) → EQ(take(x0, x1), activate(y1))
EQ(n__s(n__length(x0)), n__s(y1)) → EQ(length(x0), activate(y1))
EQ(n__s(x0), n__s(y1)) → EQ(x0, activate(y1))
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__inf(x0)), n__s(y1)) → EQ(cons(x0, n__inf(s(x0))), activate(y1))
EQ(n__s(n__inf(x0)), n__s(y1)) → EQ(n__inf(x0), activate(y1))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__take(x0, x1)), n__s(y1)) → EQ(take(x0, x1), activate(y1))
EQ(n__s(n__length(x0)), n__s(y1)) → EQ(length(x0), activate(y1))
EQ(n__s(x0), n__s(y1)) → EQ(x0, activate(y1))
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
n__take(
x0,
x1)),
n__s(
y1)) →
EQ(
take(
x0,
x1),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
EQ(n__s(n__take(0, x0)), n__s(y2)) → EQ(nil, activate(y2)) → EQ(n__s(n__take(0, x0)), n__s(y2)) → EQ(nil, activate(y2))
EQ(n__s(n__take(s(x0), cons(x1, x2))), n__s(y2)) → EQ(cons(activate(x1), n__take(activate(x0), activate(x2))), activate(y2)) → EQ(n__s(n__take(s(x0), cons(x1, x2))), n__s(y2)) → EQ(cons(activate(x1), n__take(activate(x0), activate(x2))), activate(y2))
EQ(n__s(n__take(x0, x1)), n__s(y2)) → EQ(n__take(x0, x1), activate(y2)) → EQ(n__s(n__take(x0, x1)), n__s(y2)) → EQ(n__take(x0, x1), activate(y2))
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__length(x0)), n__s(y1)) → EQ(length(x0), activate(y1))
EQ(n__s(x0), n__s(y1)) → EQ(x0, activate(y1))
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__take(0, x0)), n__s(y2)) → EQ(nil, activate(y2))
EQ(n__s(n__take(s(x0), cons(x1, x2))), n__s(y2)) → EQ(cons(activate(x1), n__take(activate(x0), activate(x2))), activate(y2))
EQ(n__s(n__take(x0, x1)), n__s(y2)) → EQ(n__take(x0, x1), activate(y2))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__length(x0)), n__s(y1)) → EQ(length(x0), activate(y1))
EQ(n__s(x0), n__s(y1)) → EQ(x0, activate(y1))
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(27) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
n__length(
x0)),
n__s(
y1)) →
EQ(
length(
x0),
activate(
y1)) at position [1] we obtained the following new rules [LPAR04]:
EQ(n__s(n__length(y0)), n__s(n__0)) → EQ(length(y0), 0) → EQ(n__s(n__length(y0)), n__s(n__0)) → EQ(length(y0), 0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), s(x0)) → EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), s(x0))
EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), inf(x0)) → EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), inf(x0))
EQ(n__s(n__length(y0)), n__s(n__take(x0, x1))) → EQ(length(y0), take(x0, x1)) → EQ(n__s(n__length(y0)), n__s(n__take(x0, x1))) → EQ(length(y0), take(x0, x1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0)) → EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0) → EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(x0), n__s(y1)) → EQ(x0, activate(y1))
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__0)) → EQ(length(y0), 0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), s(x0))
EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), inf(x0))
EQ(n__s(n__length(y0)), n__s(n__take(x0, x1))) → EQ(length(y0), take(x0, x1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(29) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
x0),
n__s(
y1)) →
EQ(
x0,
activate(
y1)) at position [1] we obtained the following new rules [LPAR04]:
EQ(n__s(y0), n__s(n__0)) → EQ(y0, 0) → EQ(n__s(y0), n__s(n__0)) → EQ(y0, 0)
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, s(x0)) → EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, s(x0))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0)) → EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1)) → EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0)) → EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0) → EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__0)) → EQ(length(y0), 0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), s(x0))
EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), inf(x0))
EQ(n__s(n__length(y0)), n__s(n__take(x0, x1))) → EQ(length(y0), take(x0, x1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__0)) → EQ(y0, 0)
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, s(x0))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(31) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
n__length(
y0)),
n__s(
n__0)) →
EQ(
length(
y0),
0) at position [1] we obtained the following new rules [LPAR04]:
EQ(n__s(n__length(y0)), n__s(n__0)) → EQ(length(y0), n__0) → EQ(n__s(n__length(y0)), n__s(n__0)) → EQ(length(y0), n__0)
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), s(x0))
EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), inf(x0))
EQ(n__s(n__length(y0)), n__s(n__take(x0, x1))) → EQ(length(y0), take(x0, x1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__0)) → EQ(y0, 0)
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, s(x0))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__0)) → EQ(length(y0), n__0)
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), s(x0))
EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), inf(x0))
EQ(n__s(n__length(y0)), n__s(n__take(x0, x1))) → EQ(length(y0), take(x0, x1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__0)) → EQ(y0, 0)
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, s(x0))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
n__length(
y0)),
n__s(
n__s(
x0))) →
EQ(
length(
y0),
s(
x0)) at position [1] we obtained the following new rules [LPAR04]:
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0)) → EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), inf(x0))
EQ(n__s(n__length(y0)), n__s(n__take(x0, x1))) → EQ(length(y0), take(x0, x1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__0)) → EQ(y0, 0)
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, s(x0))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(37) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
n__length(
y0)),
n__s(
n__inf(
x0))) →
EQ(
length(
y0),
inf(
x0)) at position [1] we obtained the following new rules [LPAR04]:
EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), cons(x0, n__inf(s(x0)))) → EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), cons(x0, n__inf(s(x0))))
EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), n__inf(x0)) → EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), n__inf(x0))
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__take(x0, x1))) → EQ(length(y0), take(x0, x1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__0)) → EQ(y0, 0)
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, s(x0))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), cons(x0, n__inf(s(x0))))
EQ(n__s(n__length(y0)), n__s(n__inf(x0))) → EQ(length(y0), n__inf(x0))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(39) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__take(x0, x1))) → EQ(length(y0), take(x0, x1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__0)) → EQ(y0, 0)
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, s(x0))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(41) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
n__length(
y0)),
n__s(
n__take(
x0,
x1))) →
EQ(
length(
y0),
take(
x0,
x1)) at position [1] we obtained the following new rules [LPAR04]:
EQ(n__s(n__length(y0)), n__s(n__take(0, x0))) → EQ(length(y0), nil) → EQ(n__s(n__length(y0)), n__s(n__take(0, x0))) → EQ(length(y0), nil)
EQ(n__s(n__length(y0)), n__s(n__take(s(x0), cons(x1, x2)))) → EQ(length(y0), cons(activate(x1), n__take(activate(x0), activate(x2)))) → EQ(n__s(n__length(y0)), n__s(n__take(s(x0), cons(x1, x2)))) → EQ(length(y0), cons(activate(x1), n__take(activate(x0), activate(x2))))
EQ(n__s(n__length(y0)), n__s(n__take(x0, x1))) → EQ(length(y0), n__take(x0, x1)) → EQ(n__s(n__length(y0)), n__s(n__take(x0, x1))) → EQ(length(y0), n__take(x0, x1))
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__0)) → EQ(y0, 0)
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, s(x0))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
EQ(n__s(n__length(y0)), n__s(n__take(0, x0))) → EQ(length(y0), nil)
EQ(n__s(n__length(y0)), n__s(n__take(s(x0), cons(x1, x2)))) → EQ(length(y0), cons(activate(x1), n__take(activate(x0), activate(x2))))
EQ(n__s(n__length(y0)), n__s(n__take(x0, x1))) → EQ(length(y0), n__take(x0, x1))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(43) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__0)) → EQ(y0, 0)
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, s(x0))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(45) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
y0),
n__s(
n__0)) →
EQ(
y0,
0) at position [1] we obtained the following new rules [LPAR04]:
EQ(n__s(y0), n__s(n__0)) → EQ(y0, n__0) → EQ(n__s(y0), n__s(n__0)) → EQ(y0, n__0)
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, s(x0))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
EQ(n__s(y0), n__s(n__0)) → EQ(y0, n__0)
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(47) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, s(x0))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(49) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
y0),
n__s(
n__s(
x0))) →
EQ(
y0,
s(
x0)) at position [1] we obtained the following new rules [LPAR04]:
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, n__s(x0)) → EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, n__s(x0))
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, inf(x0))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, n__s(x0))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(51) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
y0),
n__s(
n__inf(
x0))) →
EQ(
y0,
inf(
x0)) at position [1] we obtained the following new rules [LPAR04]:
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, cons(x0, n__inf(s(x0)))) → EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, cons(x0, n__inf(s(x0))))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, n__inf(x0)) → EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, n__inf(x0))
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, n__s(x0))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, cons(x0, n__inf(s(x0))))
EQ(n__s(y0), n__s(n__inf(x0))) → EQ(y0, n__inf(x0))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(53) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, take(x0, x1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, n__s(x0))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(55) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
EQ(
n__s(
y0),
n__s(
n__take(
x0,
x1))) →
EQ(
y0,
take(
x0,
x1)) at position [1] we obtained the following new rules [LPAR04]:
EQ(n__s(y0), n__s(n__take(0, x0))) → EQ(y0, nil) → EQ(n__s(y0), n__s(n__take(0, x0))) → EQ(y0, nil)
EQ(n__s(y0), n__s(n__take(s(x0), cons(x1, x2)))) → EQ(y0, cons(activate(x1), n__take(activate(x0), activate(x2)))) → EQ(n__s(y0), n__s(n__take(s(x0), cons(x1, x2)))) → EQ(y0, cons(activate(x1), n__take(activate(x0), activate(x2))))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, n__take(x0, x1)) → EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, n__take(x0, x1))
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, n__s(x0))
EQ(n__s(y0), n__s(n__take(0, x0))) → EQ(y0, nil)
EQ(n__s(y0), n__s(n__take(s(x0), cons(x1, x2)))) → EQ(y0, cons(activate(x1), n__take(activate(x0), activate(x2))))
EQ(n__s(y0), n__s(n__take(x0, x1))) → EQ(y0, n__take(x0, x1))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(57) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(58) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, n__s(x0))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(59) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
EQ(n__s(n__s(x0)), n__s(y1)) → EQ(n__s(x0), activate(y1))
EQ(n__s(y0), n__s(n__length(x0))) → EQ(y0, length(x0))
EQ(n__s(y0), n__s(x0)) → EQ(y0, x0)
EQ(n__s(y0), n__s(n__s(x0))) → EQ(y0, n__s(x0))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( EQ(x1, x2) ) = x1 + 1 |
POL( cons(x1, x2) ) = 2x2 + 1 |
POL( n__take(x1, x2) ) = 0 |
POL( n__length(x1) ) = 2x1 |
POL( activate(x1) ) = 2x1 + 1 |
POL( length(x1) ) = 2x1 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
length(X) → n__length(X)
take(0, X) → nil
take(X1, X2) → n__take(X1, X2)
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
s(X) → n__s(X)
inf(X) → cons(X, n__inf(s(X)))
inf(X) → n__inf(X)
0 → n__0
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(61) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
EQ(n__s(n__length(y0)), n__s(x0)) → EQ(length(y0), x0)
EQ(n__s(n__length(y0)), n__s(n__s(x0))) → EQ(length(y0), n__s(x0))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( EQ(x1, x2) ) = x1 + 2x2 + 1 |
POL( length(x1) ) = 2x1 + 1 |
POL( cons(x1, x2) ) = 2x2 + 2 |
POL( n__length(x1) ) = max{0, 2x1 - 1} |
POL( activate(x1) ) = x1 + 2 |
POL( n__take(x1, x2) ) = max{0, x2 - 2} |
POL( n__inf(x1) ) = max{0, -2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
length(X) → n__length(X)
activate(n__take(X1, X2)) → take(X1, X2)
take(0, X) → nil
take(X1, X2) → n__take(X1, X2)
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(X) → X
activate(n__length(X)) → length(X)
s(X) → n__s(X)
inf(X) → cons(X, n__inf(s(X)))
inf(X) → n__inf(X)
0 → n__0
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(n__s(n__length(y0)), n__s(n__length(x0))) → EQ(length(y0), length(x0))
The TRS R consists of the following rules:
eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0 → n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(63) NonTerminationLoopProof (COMPLETE transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
EQ(
length(
activate(
n__inf(
X))),
length(
activate(
n__inf(
X')))) evaluates to t =
EQ(
length(
activate(
n__inf(
s(
X)))),
length(
activate(
n__inf(
s(
X')))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [X / s(X), X' / s(X')]
- Semiunifier: [ ]
Rewriting sequenceEQ(length(activate(n__inf(X))), length(activate(n__inf(X')))) →
EQ(
length(
activate(
n__inf(
X))),
length(
inf(
X')))
with rule
activate(
n__inf(
X'')) →
inf(
X'') at position [1,0] and matcher [
X'' /
X']
EQ(length(activate(n__inf(X))), length(inf(X'))) →
EQ(
length(
activate(
n__inf(
X))),
length(
cons(
X',
n__inf(
s(
X')))))
with rule
inf(
X'') →
cons(
X'',
n__inf(
s(
X''))) at position [1,0] and matcher [
X'' /
X']
EQ(length(activate(n__inf(X))), length(cons(X', n__inf(s(X'))))) →
EQ(
length(
activate(
n__inf(
X))),
s(
n__length(
activate(
n__inf(
s(
X'))))))
with rule
length(
cons(
X'',
L)) →
s(
n__length(
activate(
L))) at position [1] and matcher [
X'' /
X',
L /
n__inf(
s(
X'))]
EQ(length(activate(n__inf(X))), s(n__length(activate(n__inf(s(X')))))) →
EQ(
length(
activate(
n__inf(
X))),
n__s(
n__length(
activate(
n__inf(
s(
X'))))))
with rule
s(
X'') →
n__s(
X'') at position [1] and matcher [
X'' /
n__length(
activate(
n__inf(
s(
X'))))]
EQ(length(activate(n__inf(X))), n__s(n__length(activate(n__inf(s(X')))))) →
EQ(
length(
inf(
X)),
n__s(
n__length(
activate(
n__inf(
s(
X'))))))
with rule
activate(
n__inf(
X'')) →
inf(
X'') at position [0,0] and matcher [
X'' /
X]
EQ(length(inf(X)), n__s(n__length(activate(n__inf(s(X')))))) →
EQ(
length(
cons(
X,
n__inf(
s(
X)))),
n__s(
n__length(
activate(
n__inf(
s(
X'))))))
with rule
inf(
X'') →
cons(
X'',
n__inf(
s(
X''))) at position [0,0] and matcher [
X'' /
X]
EQ(length(cons(X, n__inf(s(X)))), n__s(n__length(activate(n__inf(s(X')))))) →
EQ(
s(
n__length(
activate(
n__inf(
s(
X))))),
n__s(
n__length(
activate(
n__inf(
s(
X'))))))
with rule
length(
cons(
X'',
L)) →
s(
n__length(
activate(
L))) at position [0] and matcher [
X'' /
X,
L /
n__inf(
s(
X))]
EQ(s(n__length(activate(n__inf(s(X))))), n__s(n__length(activate(n__inf(s(X')))))) →
EQ(
n__s(
n__length(
activate(
n__inf(
s(
X))))),
n__s(
n__length(
activate(
n__inf(
s(
X'))))))
with rule
s(
X'') →
n__s(
X'') at position [0] and matcher [
X'' /
n__length(
activate(
n__inf(
s(
X))))]
EQ(n__s(n__length(activate(n__inf(s(X))))), n__s(n__length(activate(n__inf(s(X')))))) →
EQ(
length(
activate(
n__inf(
s(
X)))),
length(
activate(
n__inf(
s(
X')))))
with rule
EQ(
n__s(
n__length(
y0)),
n__s(
n__length(
x0))) →
EQ(
length(
y0),
length(
x0))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(64) NO