YES Termination w.r.t. Q proof of Transformed_CSR_04_Ex1_2_AEL03_GM.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__FROM(X) → MARK(X)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Y)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Y)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
A__PI(X) → A__2NDSPOS(mark(X), a__from(0))
A__PI(X) → MARK(X)
A__PI(X) → A__FROM(0)
A__PLUS(0, Y) → MARK(Y)
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(X)
A__PLUS(s(X), Y) → MARK(Y)
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__TIMES(s(X), Y) → MARK(Y)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
A__TIMES(s(X), Y) → MARK(X)
A__SQUARE(X) → A__TIMES(mark(X), mark(X))
A__SQUARE(X) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(from(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(pi(X)) → A__PI(mark(X))
MARK(pi(X)) → MARK(X)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → A__SQUARE(mark(X))
MARK(square(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule A__PI(X) → A__2NDSPOS(mark(X), a__from(0)) at position [1] we obtained the following new rules [LPAR04]:

A__PI(y0) → A__2NDSPOS(mark(y0), cons(mark(0), from(s(0)))) → A__PI(y0) → A__2NDSPOS(mark(y0), cons(mark(0), from(s(0))))
A__PI(y0) → A__2NDSPOS(mark(y0), from(0)) → A__PI(y0) → A__2NDSPOS(mark(y0), from(0))

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__FROM(X) → MARK(X)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Y)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Y)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
A__PI(X) → MARK(X)
A__PI(X) → A__FROM(0)
A__PLUS(0, Y) → MARK(Y)
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(X)
A__PLUS(s(X), Y) → MARK(Y)
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__TIMES(s(X), Y) → MARK(Y)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
A__TIMES(s(X), Y) → MARK(X)
A__SQUARE(X) → A__TIMES(mark(X), mark(X))
A__SQUARE(X) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(from(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(pi(X)) → A__PI(mark(X))
MARK(pi(X)) → MARK(X)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → A__SQUARE(mark(X))
MARK(square(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
A__PI(y0) → A__2NDSPOS(mark(y0), cons(mark(0), from(s(0))))
A__PI(y0) → A__2NDSPOS(mark(y0), from(0))

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → A__FROM(mark(X))
A__FROM(X) → MARK(X)
MARK(from(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(pi(X)) → A__PI(mark(X))
A__PI(X) → MARK(X)
MARK(pi(X)) → MARK(X)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(X)
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → A__SQUARE(mark(X))
A__SQUARE(X) → A__TIMES(mark(X), mark(X))
A__TIMES(s(X), Y) → MARK(Y)
MARK(square(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
A__TIMES(s(X), Y) → MARK(X)
A__SQUARE(X) → MARK(X)
A__PLUS(s(X), Y) → MARK(Y)
A__PI(X) → A__FROM(0)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(pi(X)) → MARK(X)
A__PLUS(s(X), Y) → MARK(X)
MARK(square(X)) → MARK(X)
A__SQUARE(X) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 4A + 0A·x1

POL(from(x1)) = 2A + 2A·x1

POL(A__FROM(x1)) = 4A + 2A·x1

POL(mark(x1)) = -I + 0A·x1

POL(2ndspos(x1, x2)) = 4A + 0A·x1 + 3A·x2

POL(A__2NDSPOS(x1, x2)) = 4A + 0A·x1 + 1A·x2

POL(s(x1)) = 0A + 0A·x1

POL(cons(x1, x2)) = 0A + 1A·x1 + 0A·x2

POL(2ndsneg(x1, x2)) = 4A + 0A·x1 + 3A·x2

POL(A__2NDSNEG(x1, x2)) = 4A + 0A·x1 + 1A·x2

POL(pi(x1)) = 5A + 1A·x1

POL(A__PI(x1)) = 4A + 1A·x1

POL(plus(x1, x2)) = 3A + 5A·x1 + 0A·x2

POL(A__PLUS(x1, x2)) = 3A + 5A·x1 + 0A·x2

POL(0) = 0A

POL(times(x1, x2)) = 3A + 0A·x1 + 5A·x2

POL(A__TIMES(x1, x2)) = 4A + 0A·x1 + 5A·x2

POL(a__times(x1, x2)) = 3A + 0A·x1 + 5A·x2

POL(square(x1)) = 5A + 5A·x1

POL(A__SQUARE(x1)) = 5A + 5A·x1

POL(posrecip(x1)) = -I + 0A·x1

POL(negrecip(x1)) = -I + 0A·x1

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(a__from(x1)) = 2A + 2A·x1

POL(a__2ndspos(x1, x2)) = 4A + 0A·x1 + 3A·x2

POL(a__2ndsneg(x1, x2)) = 4A + 0A·x1 + 3A·x2

POL(a__pi(x1)) = 5A + 1A·x1

POL(a__plus(x1, x2)) = 3A + 5A·x1 + 0A·x2

POL(a__square(x1)) = 5A + 5A·x1

POL(nil) = 2A

POL(rnil) = 3A

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(0, Y) → mark(Y)
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
mark(square(X)) → a__square(mark(X))
a__square(X) → a__times(mark(X), mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__times(0, Y) → 0
a__times(X1, X2) → times(X1, X2)
a__from(X) → from(X)
a__2ndspos(0, Z) → rnil
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(0, Z) → rnil
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__square(X) → square(X)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → A__FROM(mark(X))
A__FROM(X) → MARK(X)
MARK(from(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(pi(X)) → A__PI(mark(X))
A__PI(X) → MARK(X)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → A__SQUARE(mark(X))
A__SQUARE(X) → A__TIMES(mark(X), mark(X))
A__TIMES(s(X), Y) → MARK(Y)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
A__TIMES(s(X), Y) → MARK(X)
A__PLUS(s(X), Y) → MARK(Y)
A__PI(X) → A__FROM(0)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


A__PI(X) → A__FROM(0)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 3A + 0A·x1

POL(from(x1)) = 5A + 0A·x1

POL(A__FROM(x1)) = 4A + 0A·x1

POL(mark(x1)) = 5A + 0A·x1

POL(2ndspos(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(A__2NDSPOS(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(s(x1)) = 4A + 0A·x1

POL(cons(x1, x2)) = 3A + 0A·x1 + 0A·x2

POL(2ndsneg(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(A__2NDSNEG(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(pi(x1)) = 5A + 0A·x1

POL(A__PI(x1)) = 5A + 0A·x1

POL(plus(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(A__PLUS(x1, x2)) = 5A + -I·x1 + 0A·x2

POL(0) = 4A

POL(times(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(A__TIMES(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(a__times(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(square(x1)) = 5A + 0A·x1

POL(A__SQUARE(x1)) = 5A + 0A·x1

POL(posrecip(x1)) = -I + 0A·x1

POL(negrecip(x1)) = -I + 0A·x1

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(a__from(x1)) = 5A + 0A·x1

POL(a__2ndspos(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(a__2ndsneg(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(a__pi(x1)) = 5A + 0A·x1

POL(a__plus(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(a__square(x1)) = 5A + 0A·x1

POL(nil) = 4A

POL(rnil) = 3A

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(0, Y) → mark(Y)
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
mark(square(X)) → a__square(mark(X))
a__square(X) → a__times(mark(X), mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__times(0, Y) → 0
a__times(X1, X2) → times(X1, X2)
a__from(X) → from(X)
a__2ndspos(0, Z) → rnil
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(0, Z) → rnil
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__square(X) → square(X)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → A__FROM(mark(X))
A__FROM(X) → MARK(X)
MARK(from(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(pi(X)) → A__PI(mark(X))
A__PI(X) → MARK(X)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → A__SQUARE(mark(X))
A__SQUARE(X) → A__TIMES(mark(X), mark(X))
A__TIMES(s(X), Y) → MARK(Y)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
A__TIMES(s(X), Y) → MARK(X)
A__PLUS(s(X), Y) → MARK(Y)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


A__PI(X) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 2A + 1A·x1

POL(from(x1)) = 1A + 1A·x1

POL(A__FROM(x1)) = 2A + 2A·x1

POL(mark(x1)) = 0A + 0A·x1

POL(2ndspos(x1, x2)) = 1A + 1A·x1 + 1A·x2

POL(A__2NDSPOS(x1, x2)) = 2A + 2A·x1 + 2A·x2

POL(s(x1)) = 0A + 0A·x1

POL(cons(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(2ndsneg(x1, x2)) = 1A + 1A·x1 + 1A·x2

POL(A__2NDSNEG(x1, x2)) = 2A + 2A·x1 + 2A·x2

POL(pi(x1)) = 2A + 2A·x1

POL(A__PI(x1)) = 3A + 3A·x1

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(A__PLUS(x1, x2)) = 2A + -I·x1 + 1A·x2

POL(0) = 0A

POL(times(x1, x2)) = 1A + 1A·x1 + 1A·x2

POL(A__TIMES(x1, x2)) = 1A + 2A·x1 + 2A·x2

POL(a__times(x1, x2)) = 1A + 1A·x1 + 1A·x2

POL(square(x1)) = 4A + 1A·x1

POL(A__SQUARE(x1)) = 3A + 2A·x1

POL(posrecip(x1)) = -I + 0A·x1

POL(negrecip(x1)) = -I + 0A·x1

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(a__from(x1)) = 1A + 1A·x1

POL(a__2ndspos(x1, x2)) = 1A + 1A·x1 + 1A·x2

POL(a__2ndsneg(x1, x2)) = 1A + 1A·x1 + 1A·x2

POL(a__pi(x1)) = 2A + 2A·x1

POL(a__plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(a__square(x1)) = 4A + 1A·x1

POL(nil) = 0A

POL(rnil) = 1A

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(0, Y) → mark(Y)
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
mark(square(X)) → a__square(mark(X))
a__square(X) → a__times(mark(X), mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__times(0, Y) → 0
a__times(X1, X2) → times(X1, X2)
a__from(X) → from(X)
a__2ndspos(0, Z) → rnil
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(0, Z) → rnil
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__square(X) → square(X)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → A__FROM(mark(X))
A__FROM(X) → MARK(X)
MARK(from(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(pi(X)) → A__PI(mark(X))
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → A__SQUARE(mark(X))
A__SQUARE(X) → A__TIMES(mark(X), mark(X))
A__TIMES(s(X), Y) → MARK(Y)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
A__TIMES(s(X), Y) → MARK(X)
A__PLUS(s(X), Y) → MARK(Y)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__FROM(X) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(from(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(2ndsneg(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(Y)
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → A__SQUARE(mark(X))
A__SQUARE(X) → A__TIMES(mark(X), mark(X))
A__TIMES(s(X), Y) → MARK(Y)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
A__TIMES(s(X), Y) → MARK(X)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(2ndspos(X1, X2)) → MARK(X1)
MARK(2ndsneg(X1, X2)) → MARK(X1)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(N)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(N)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__FROM(x1)) = 1A + 0A·x1

POL(MARK(x1)) = 1A + 0A·x1

POL(from(x1)) = 2A + 0A·x1

POL(mark(x1)) = 1A + 0A·x1

POL(2ndspos(x1, x2)) = 5A + 4A·x1 + 0A·x2

POL(A__2NDSPOS(x1, x2)) = 3A + 4A·x1 + 0A·x2

POL(s(x1)) = 2A + 0A·x1

POL(cons(x1, x2)) = 2A + 0A·x1 + 0A·x2

POL(2ndsneg(x1, x2)) = 5A + 4A·x1 + 0A·x2

POL(A__2NDSNEG(x1, x2)) = 3A + 4A·x1 + 0A·x2

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(A__PLUS(x1, x2)) = 1A + -I·x1 + 0A·x2

POL(0) = 5A

POL(times(x1, x2)) = 2A + 0A·x1 + 0A·x2

POL(A__TIMES(x1, x2)) = 1A + 0A·x1 + 0A·x2

POL(a__times(x1, x2)) = 2A + 0A·x1 + 0A·x2

POL(square(x1)) = 2A + 0A·x1

POL(A__SQUARE(x1)) = 2A + 0A·x1

POL(posrecip(x1)) = -I + 0A·x1

POL(negrecip(x1)) = -I + 0A·x1

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(a__from(x1)) = 2A + 0A·x1

POL(a__2ndspos(x1, x2)) = 5A + 4A·x1 + 0A·x2

POL(a__2ndsneg(x1, x2)) = 5A + 4A·x1 + 0A·x2

POL(pi(x1)) = 5A + 4A·x1

POL(a__pi(x1)) = 5A + 4A·x1

POL(a__plus(x1, x2)) = 1A + 0A·x1 + 0A·x2

POL(a__square(x1)) = 2A + 0A·x1

POL(nil) = 4A

POL(rnil) = 5A

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(0, Y) → mark(Y)
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
mark(square(X)) → a__square(mark(X))
a__square(X) → a__times(mark(X), mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__times(0, Y) → 0
a__times(X1, X2) → times(X1, X2)
a__from(X) → from(X)
a__2ndspos(0, Z) → rnil
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(0, Z) → rnil
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__square(X) → square(X)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__FROM(X) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(from(X)) → MARK(X)
MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(Y)
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(square(X)) → A__SQUARE(mark(X))
A__SQUARE(X) → A__TIMES(mark(X), mark(X))
A__TIMES(s(X), Y) → MARK(Y)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
A__TIMES(s(X), Y) → MARK(X)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(from(X)) → MARK(X)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Y)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Y)
MARK(square(X)) → A__SQUARE(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__FROM(x1)) = 4A + 3A·x1

POL(MARK(x1)) = 4A + 2A·x1

POL(from(x1)) = 5A + 1A·x1

POL(mark(x1)) = -I + 0A·x1

POL(2ndspos(x1, x2)) = 4A + 4A·x1 + 0A·x2

POL(A__2NDSPOS(x1, x2)) = 5A + 2A·x1 + 2A·x2

POL(s(x1)) = 0A + 0A·x1

POL(cons(x1, x2)) = 3A + 1A·x1 + 0A·x2

POL(2ndsneg(x1, x2)) = 0A + 4A·x1 + 0A·x2

POL(A__2NDSNEG(x1, x2)) = 4A + 2A·x1 + 2A·x2

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(A__PLUS(x1, x2)) = 4A + -I·x1 + 2A·x2

POL(0) = 2A

POL(times(x1, x2)) = 1A + 0A·x1 + 0A·x2

POL(A__TIMES(x1, x2)) = 4A + 2A·x1 + 2A·x2

POL(a__times(x1, x2)) = 1A + 0A·x1 + 0A·x2

POL(square(x1)) = 3A + 2A·x1

POL(A__SQUARE(x1)) = 4A + 3A·x1

POL(posrecip(x1)) = 3A + 0A·x1

POL(negrecip(x1)) = -I + 1A·x1

POL(rcons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(a__from(x1)) = 5A + 1A·x1

POL(a__2ndspos(x1, x2)) = 4A + 4A·x1 + 0A·x2

POL(a__2ndsneg(x1, x2)) = 0A + 4A·x1 + 0A·x2

POL(pi(x1)) = 5A + 5A·x1

POL(a__pi(x1)) = 5A + 5A·x1

POL(a__plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(a__square(x1)) = 3A + 2A·x1

POL(nil) = 3A

POL(rnil) = 5A

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(0, Y) → mark(Y)
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
mark(square(X)) → a__square(mark(X))
a__square(X) → a__times(mark(X), mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__times(0, Y) → 0
a__times(X1, X2) → times(X1, X2)
a__from(X) → from(X)
a__2ndspos(0, Z) → rnil
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(0, Z) → rnil
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__square(X) → square(X)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__FROM(X) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(Y)
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
A__SQUARE(X) → A__TIMES(mark(X), mark(X))
A__TIMES(s(X), Y) → MARK(Y)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
A__TIMES(s(X), Y) → MARK(X)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → A__FROM(mark(X))
A__FROM(X) → MARK(X)
MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(Y)
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
A__TIMES(s(X), Y) → MARK(Y)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
A__TIMES(s(X), Y) → MARK(X)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(from(X)) → A__FROM(mark(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 5A + 1A·x1

POL(from(x1)) = 5A + 1A·x1

POL(A__FROM(x1)) = 5A + 1A·x1

POL(mark(x1)) = -I + 0A·x1

POL(2ndspos(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(A__2NDSPOS(x1, x2)) = 5A + -I·x1 + 1A·x2

POL(s(x1)) = -I + 0A·x1

POL(cons(x1, x2)) = -I + 1A·x1 + 0A·x2

POL(A__2NDSNEG(x1, x2)) = 5A + -I·x1 + 1A·x2

POL(2ndsneg(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(plus(x1, x2)) = 4A + 1A·x1 + 0A·x2

POL(A__PLUS(x1, x2)) = 5A + 2A·x1 + 1A·x2

POL(0) = 1A

POL(times(x1, x2)) = 4A + 0A·x1 + 1A·x2

POL(A__TIMES(x1, x2)) = 5A + 1A·x1 + 2A·x2

POL(a__times(x1, x2)) = 4A + 0A·x1 + 1A·x2

POL(posrecip(x1)) = -I + 0A·x1

POL(negrecip(x1)) = -I + 0A·x1

POL(rcons(x1, x2)) = -I + 1A·x1 + 0A·x2

POL(a__from(x1)) = 5A + 1A·x1

POL(a__2ndspos(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(a__2ndsneg(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(pi(x1)) = 5A + 4A·x1

POL(a__pi(x1)) = 5A + 4A·x1

POL(a__plus(x1, x2)) = 4A + 1A·x1 + 0A·x2

POL(square(x1)) = 4A + 5A·x1

POL(a__square(x1)) = 4A + 5A·x1

POL(nil) = 1A

POL(rnil) = 0A

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(0, Y) → mark(Y)
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
mark(square(X)) → a__square(mark(X))
a__square(X) → a__times(mark(X), mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__times(0, Y) → 0
a__times(X1, X2) → times(X1, X2)
a__from(X) → from(X)
a__2ndspos(0, Z) → rnil
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(0, Z) → rnil
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__square(X) → square(X)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__FROM(X) → MARK(X)
MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(Y)
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
A__TIMES(s(X), Y) → MARK(Y)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
A__TIMES(s(X), Y) → MARK(X)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)
MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(Y)
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(rcons(X1, X2)) → MARK(X1)
MARK(rcons(X1, X2)) → MARK(X2)
A__TIMES(s(X), Y) → MARK(Y)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
A__TIMES(s(X), Y) → MARK(X)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(2ndspos(X1, X2)) → A__2NDSPOS(mark(X1), mark(X2))
MARK(2ndspos(X1, X2)) → MARK(X2)
MARK(2ndsneg(X1, X2)) → A__2NDSNEG(mark(X1), mark(X2))
MARK(2ndsneg(X1, X2)) → MARK(X2)
MARK(plus(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X1)
MARK(times(X1, X2)) → MARK(X2)
MARK(rcons(X1, X2)) → MARK(X1)
A__TIMES(s(X), Y) → MARK(Y)
A__TIMES(s(X), Y) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(A__2NDSPOS(x1, x2)) = 3A + 0A·x1 + 4A·x2

POL(s(x1)) = -I + 0A·x1

POL(cons(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(A__2NDSNEG(x1, x2)) = 3A + 0A·x1 + 4A·x2

POL(mark(x1)) = -I + 0A·x1

POL(MARK(x1)) = 3A + 4A·x1

POL(2ndspos(x1, x2)) = 2A + 0A·x1 + 5A·x2

POL(2ndsneg(x1, x2)) = 2A + 0A·x1 + 5A·x2

POL(plus(x1, x2)) = 0A + 1A·x1 + 0A·x2

POL(A__PLUS(x1, x2)) = 3A + -I·x1 + 4A·x2

POL(0) = 0A

POL(times(x1, x2)) = 1A + 1A·x1 + 1A·x2

POL(A__TIMES(x1, x2)) = 5A + 5A·x1 + 5A·x2

POL(a__times(x1, x2)) = 1A + 1A·x1 + 1A·x2

POL(posrecip(x1)) = -I + 4A·x1

POL(negrecip(x1)) = -I + 4A·x1

POL(rcons(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(from(x1)) = -I + 0A·x1

POL(a__from(x1)) = -I + 0A·x1

POL(a__2ndspos(x1, x2)) = 2A + 0A·x1 + 5A·x2

POL(a__2ndsneg(x1, x2)) = 2A + 0A·x1 + 5A·x2

POL(pi(x1)) = 5A + 5A·x1

POL(a__pi(x1)) = 5A + 5A·x1

POL(a__plus(x1, x2)) = 0A + 1A·x1 + 0A·x2

POL(square(x1)) = 3A + 3A·x1

POL(a__square(x1)) = 3A + 3A·x1

POL(nil) = 2A

POL(rnil) = 0A

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(0, Y) → mark(Y)
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
mark(square(X)) → a__square(mark(X))
a__square(X) → a__times(mark(X), mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__times(0, Y) → 0
a__times(X1, X2) → times(X1, X2)
a__from(X) → from(X)
a__2ndspos(0, Z) → rnil
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(0, Z) → rnil
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__square(X) → square(X)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → MARK(Z)
A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → MARK(Z)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(Y)
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(rcons(X1, X2)) → MARK(X2)
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

(28) Complex Obligation (AND)

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(negrecip(X)) → MARK(X)
MARK(rcons(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(negrecip(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__PLUS(x1, x2) ) = 2x2

POL( A__TIMES(x1, x2) ) = 2

POL( mark(x1) ) = x1

POL( from(x1) ) = max{0, -1}

POL( a__from(x1) ) = 0

POL( 2ndspos(x1, x2) ) = x2 + 1

POL( a__2ndspos(x1, x2) ) = x2 + 1

POL( 2ndsneg(x1, x2) ) = 2x2 + 1

POL( a__2ndsneg(x1, x2) ) = 2x2 + 1

POL( pi(x1) ) = x1 + 2

POL( a__pi(x1) ) = x1 + 2

POL( plus(x1, x2) ) = x2

POL( a__plus(x1, x2) ) = x2

POL( 0 ) = 0

POL( times(x1, x2) ) = 1

POL( a__times(x1, x2) ) = 1

POL( s(x1) ) = x1

POL( square(x1) ) = 1

POL( a__square(x1) ) = 1

POL( posrecip(x1) ) = x1

POL( negrecip(x1) ) = 2x1 + 2

POL( nil ) = 0

POL( cons(x1, x2) ) = 2x2

POL( rnil ) = 1

POL( rcons(x1, x2) ) = x2

POL( MARK(x1) ) = 2x1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(0, Y) → mark(Y)
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
mark(square(X)) → a__square(mark(X))
a__square(X) → a__times(mark(X), mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__times(0, Y) → 0
a__times(X1, X2) → times(X1, X2)
a__from(X) → from(X)
a__2ndspos(0, Z) → rnil
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(0, Z) → rnil
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__square(X) → square(X)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
MARK(s(X)) → MARK(X)
MARK(posrecip(X)) → MARK(X)
MARK(rcons(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(posrecip(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__PLUS(x1, x2) ) = x2

POL( A__TIMES(x1, x2) ) = 0

POL( mark(x1) ) = x1

POL( from(x1) ) = 1

POL( a__from(x1) ) = 1

POL( 2ndspos(x1, x2) ) = 0

POL( a__2ndspos(x1, x2) ) = 0

POL( 2ndsneg(x1, x2) ) = 0

POL( a__2ndsneg(x1, x2) ) = max{0, -1}

POL( pi(x1) ) = 0

POL( a__pi(x1) ) = 0

POL( plus(x1, x2) ) = x2

POL( a__plus(x1, x2) ) = x2

POL( 0 ) = 0

POL( times(x1, x2) ) = 0

POL( a__times(x1, x2) ) = 0

POL( s(x1) ) = x1

POL( square(x1) ) = 2x1 + 1

POL( a__square(x1) ) = 2x1 + 1

POL( posrecip(x1) ) = x1 + 1

POL( negrecip(x1) ) = max{0, -2}

POL( nil ) = 0

POL( cons(x1, x2) ) = 1

POL( rnil ) = 0

POL( rcons(x1, x2) ) = 2x2

POL( MARK(x1) ) = x1


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(0, Y) → mark(Y)
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
mark(square(X)) → a__square(mark(X))
a__square(X) → a__times(mark(X), mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__times(0, Y) → 0
a__times(X1, X2) → times(X1, X2)
a__from(X) → from(X)
a__2ndspos(0, Z) → rnil
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(0, Z) → rnil
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__square(X) → square(X)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__PLUS(0, Y) → MARK(Y)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(Y)
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
MARK(s(X)) → MARK(X)
MARK(rcons(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X2)
MARK(times(X1, X2)) → A__TIMES(mark(X1), mark(X2))
A__TIMES(s(X), Y) → A__PLUS(mark(Y), a__times(mark(X), mark(Y)))
A__TIMES(s(X), Y) → A__TIMES(mark(X), mark(Y))
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__PLUS(x1, x2)  =  A__PLUS(x2)
0  =  0
MARK(x1)  =  MARK(x1)
plus(x1, x2)  =  plus(x1, x2)
mark(x1)  =  x1
s(x1)  =  s(x1)
times(x1, x2)  =  times(x1, x2)
A__TIMES(x1, x2)  =  A__TIMES(x1, x2)
a__times(x1, x2)  =  a__times(x1, x2)
rcons(x1, x2)  =  x2
from(x1)  =  x1
a__from(x1)  =  x1
2ndspos(x1, x2)  =  2ndspos(x1)
a__2ndspos(x1, x2)  =  a__2ndspos(x1)
2ndsneg(x1, x2)  =  2ndsneg(x1)
a__2ndsneg(x1, x2)  =  a__2ndsneg(x1)
pi(x1)  =  pi(x1)
a__pi(x1)  =  a__pi(x1)
a__plus(x1, x2)  =  a__plus(x1, x2)
square(x1)  =  square(x1)
a__square(x1)  =  a__square(x1)
posrecip(x1)  =  posrecip
negrecip(x1)  =  negrecip
nil  =  nil
cons(x1, x2)  =  x1
rnil  =  rnil

Recursive path order with status [RPO].
Quasi-Precedence:
[2ndspos1, a2ndspos1, 2ndsneg1, a2ndsneg1, pi1, api1] > [0, s1, rnil]
[square1, asquare1] > [times2, ATIMES2, atimes2] > [APLUS1, MARK1] > [0, s1, rnil]
[square1, asquare1] > [times2, ATIMES2, atimes2] > [plus2, aplus2] > [0, s1, rnil]
posrecip > [0, s1, rnil]
negrecip > [0, s1, rnil]
nil > [0, s1, rnil]

Status:
APLUS1: [1]
0: multiset
MARK1: [1]
plus2: [1,2]
s1: [1]
times2: [1,2]
ATIMES2: [1,2]
atimes2: [1,2]
2ndspos1: multiset
a2ndspos1: multiset
2ndsneg1: multiset
a2ndsneg1: multiset
pi1: multiset
api1: multiset
aplus2: [1,2]
square1: [1]
asquare1: [1]
posrecip: multiset
negrecip: []
nil: multiset
rnil: multiset


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(0, Y) → mark(Y)
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
mark(square(X)) → a__square(mark(X))
a__square(X) → a__times(mark(X), mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__times(0, Y) → 0
a__times(X1, X2) → times(X1, X2)
a__from(X) → from(X)
a__2ndspos(0, Z) → rnil
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(0, Z) → rnil
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__square(X) → square(X)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__PLUS(0, Y) → MARK(Y)
A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
A__PLUS(s(X), Y) → MARK(Y)
MARK(rcons(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

(37) Complex Obligation (AND)

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(rcons(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(rcons(X1, X2)) → MARK(X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MARK(rcons(X1, X2)) → MARK(X2)
    The graph contains the following edges 1 > 1

(42) YES

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


A__PLUS(s(X), Y) → A__PLUS(mark(X), mark(Y))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
s(x1)  =  s(x1)
mark(x1)  =  x1
from(x1)  =  from
a__from(x1)  =  a__from
2ndspos(x1, x2)  =  2ndspos(x2)
a__2ndspos(x1, x2)  =  a__2ndspos(x2)
2ndsneg(x1, x2)  =  2ndsneg(x2)
a__2ndsneg(x1, x2)  =  a__2ndsneg(x2)
pi(x1)  =  pi(x1)
a__pi(x1)  =  a__pi(x1)
plus(x1, x2)  =  plus(x1, x2)
a__plus(x1, x2)  =  a__plus(x1, x2)
0  =  0
times(x1, x2)  =  times(x1, x2)
a__times(x1, x2)  =  a__times(x1, x2)
square(x1)  =  square(x1)
a__square(x1)  =  a__square(x1)
posrecip(x1)  =  posrecip
negrecip(x1)  =  negrecip
nil  =  nil
cons(x1, x2)  =  cons
rnil  =  rnil
rcons(x1, x2)  =  rcons

Recursive path order with status [RPO].
Quasi-Precedence:
APLUS2 > [from, afrom, cons]
[2ndsneg1, a2ndsneg1] > [s1, 2ndspos1, a2ndspos1, pi1, api1, negrecip] > rnil > [from, afrom, cons]
[2ndsneg1, a2ndsneg1] > [s1, 2ndspos1, a2ndspos1, pi1, api1, negrecip] > rcons > [from, afrom, cons]
0 > rnil > [from, afrom, cons]
[square1, asquare1] > [times2, atimes2] > [plus2, aplus2] > [s1, 2ndspos1, a2ndspos1, pi1, api1, negrecip] > rnil > [from, afrom, cons]
[square1, asquare1] > [times2, atimes2] > [plus2, aplus2] > [s1, 2ndspos1, a2ndspos1, pi1, api1, negrecip] > rcons > [from, afrom, cons]
posrecip > [from, afrom, cons]
nil > [from, afrom, cons]

Status:
APLUS2: [1,2]
s1: [1]
from: []
afrom: []
2ndspos1: [1]
a2ndspos1: [1]
2ndsneg1: multiset
a2ndsneg1: multiset
pi1: [1]
api1: [1]
plus2: [1,2]
aplus2: [1,2]
0: multiset
times2: multiset
atimes2: multiset
square1: [1]
asquare1: [1]
posrecip: multiset
negrecip: multiset
nil: multiset
cons: []
rnil: multiset
rcons: multiset


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(0, Y) → mark(Y)
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
mark(square(X)) → a__square(mark(X))
a__square(X) → a__times(mark(X), mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(0, Z) → rnil
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(0, Z) → rnil
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(0, Y) → 0
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))

(45) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(47) YES

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))

The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


A__2NDSNEG(s(N), cons(X, cons(Y, Z))) → A__2NDSPOS(mark(N), mark(Z))
A__2NDSPOS(s(N), cons(X, cons(Y, Z))) → A__2NDSNEG(mark(N), mark(Z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__2NDSNEG(x1, x2)  =  A__2NDSNEG(x1)
s(x1)  =  s(x1)
cons(x1, x2)  =  x1
A__2NDSPOS(x1, x2)  =  A__2NDSPOS(x1)
mark(x1)  =  x1
from(x1)  =  x1
a__from(x1)  =  x1
2ndspos(x1, x2)  =  x1
a__2ndspos(x1, x2)  =  x1
2ndsneg(x1, x2)  =  x1
a__2ndsneg(x1, x2)  =  x1
pi(x1)  =  pi(x1)
a__pi(x1)  =  a__pi(x1)
plus(x1, x2)  =  plus(x1, x2)
a__plus(x1, x2)  =  a__plus(x1, x2)
0  =  0
times(x1, x2)  =  times(x1, x2)
a__times(x1, x2)  =  a__times(x1, x2)
square(x1)  =  square(x1)
a__square(x1)  =  a__square(x1)
posrecip(x1)  =  posrecip
negrecip(x1)  =  negrecip(x1)
nil  =  nil
rnil  =  rnil
rcons(x1, x2)  =  rcons

Recursive path order with status [RPO].
Quasi-Precedence:
[pi1, api1] > [A2NDSNEG1, A2NDSPOS1, 0, rnil]
[square1, asquare1] > [times2, atimes2] > [plus2, aplus2] > s1 > negrecip1 > [A2NDSNEG1, A2NDSPOS1, 0, rnil]
[square1, asquare1] > [times2, atimes2] > [plus2, aplus2] > s1 > rcons > [A2NDSNEG1, A2NDSPOS1, 0, rnil]
posrecip > [A2NDSNEG1, A2NDSPOS1, 0, rnil]
nil > [A2NDSNEG1, A2NDSPOS1, 0, rnil]

Status:
A2NDSNEG1: multiset
s1: multiset
A2NDSPOS1: multiset
pi1: multiset
api1: multiset
plus2: [1,2]
aplus2: [1,2]
0: multiset
times2: multiset
atimes2: multiset
square1: multiset
asquare1: multiset
posrecip: multiset
negrecip1: multiset
nil: multiset
rnil: multiset
rcons: multiset


The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(0, Y) → mark(Y)
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
mark(square(X)) → a__square(mark(X))
a__square(X) → a__times(mark(X), mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(0, Z) → rnil
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(0, Z) → rnil
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(0, Y) → 0
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))

(50) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__from(X) → cons(mark(X), from(s(X)))
a__2ndspos(0, Z) → rnil
a__2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(mark(Y)), a__2ndsneg(mark(N), mark(Z)))
a__2ndsneg(0, Z) → rnil
a__2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(mark(Y)), a__2ndspos(mark(N), mark(Z)))
a__pi(X) → a__2ndspos(mark(X), a__from(0))
a__plus(0, Y) → mark(Y)
a__plus(s(X), Y) → s(a__plus(mark(X), mark(Y)))
a__times(0, Y) → 0
a__times(s(X), Y) → a__plus(mark(Y), a__times(mark(X), mark(Y)))
a__square(X) → a__times(mark(X), mark(X))
mark(from(X)) → a__from(mark(X))
mark(2ndspos(X1, X2)) → a__2ndspos(mark(X1), mark(X2))
mark(2ndsneg(X1, X2)) → a__2ndsneg(mark(X1), mark(X2))
mark(pi(X)) → a__pi(mark(X))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(times(X1, X2)) → a__times(mark(X1), mark(X2))
mark(square(X)) → a__square(mark(X))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(posrecip(X)) → posrecip(mark(X))
mark(negrecip(X)) → negrecip(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(rnil) → rnil
mark(rcons(X1, X2)) → rcons(mark(X1), mark(X2))
a__from(X) → from(X)
a__2ndspos(X1, X2) → 2ndspos(X1, X2)
a__2ndsneg(X1, X2) → 2ndsneg(X1, X2)
a__pi(X) → pi(X)
a__plus(X1, X2) → plus(X1, X2)
a__times(X1, X2) → times(X1, X2)
a__square(X) → square(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(52) YES