(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FROM(X) → CONS(X, n__from(n__s(X)))
LENGTH(n__cons(X, Y)) → S(length1(activate(Y)))
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH(n__cons(X, Y)) → ACTIVATE(Y)
LENGTH1(X) → LENGTH(activate(X))
LENGTH1(X) → ACTIVATE(X)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 8 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ACTIVATE(n__s(X)) → ACTIVATE(X)
The graph contains the following edges 1 > 1
- ACTIVATE(n__from(X)) → ACTIVATE(X)
The graph contains the following edges 1 > 1
- ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
The graph contains the following edges 1 > 1
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(X) → LENGTH(activate(X))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
LENGTH1(
X) →
LENGTH(
activate(
X)) at position [0] we obtained the following new rules [LPAR04]:
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0))) → LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0))) → LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
LENGTH1(n__nil) → LENGTH(nil) → LENGTH1(n__nil) → LENGTH(nil)
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1)) → LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(x0) → LENGTH(x0) → LENGTH1(x0) → LENGTH(x0)
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
LENGTH1(n__nil) → LENGTH(nil)
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(x0) → LENGTH(x0)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
LENGTH1(
n__nil) →
LENGTH(
nil) at position [0] we obtained the following new rules [LPAR04]:
LENGTH1(n__nil) → LENGTH(n__nil) → LENGTH1(n__nil) → LENGTH(n__nil)
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(x0) → LENGTH(x0)
LENGTH1(n__nil) → LENGTH(n__nil)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(x0) → LENGTH(x0)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
LENGTH1(n__s(x0)) → LENGTH(s(activate(x0)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( cons(x1, x2) ) = 2x2 |
POL( n__cons(x1, x2) ) = 2x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH1(n__from(x0)) → LENGTH(from(activate(x0)))
LENGTH(n__cons(X, Y)) → LENGTH1(activate(Y))
LENGTH1(n__cons(x0, x1)) → LENGTH(cons(activate(x0), x1))
LENGTH1(x0) → LENGTH(x0)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
length(n__nil) → 0
length(n__cons(X, Y)) → s(length1(activate(Y)))
length1(X) → length(activate(X))
from(X) → n__from(X)
s(X) → n__s(X)
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__nil) → nil
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) NonTerminationLoopProof (COMPLETE transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
LENGTH(
from(
X)) evaluates to t =
LENGTH(
from(
activate(
n__s(
X))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [X / activate(n__s(X))]
- Semiunifier: [ ]
Rewriting sequenceLENGTH(from(X)) →
LENGTH(
cons(
X,
n__from(
n__s(
X))))
with rule
from(
X') →
cons(
X',
n__from(
n__s(
X'))) at position [0] and matcher [
X' /
X]
LENGTH(cons(X, n__from(n__s(X)))) →
LENGTH(
n__cons(
X,
n__from(
n__s(
X))))
with rule
cons(
X1,
X2) →
n__cons(
X1,
X2) at position [0] and matcher [
X1 /
X,
X2 /
n__from(
n__s(
X))]
LENGTH(n__cons(X, n__from(n__s(X)))) →
LENGTH1(
activate(
n__from(
n__s(
X))))
with rule
LENGTH(
n__cons(
X',
Y)) →
LENGTH1(
activate(
Y)) at position [] and matcher [
X' /
X,
Y /
n__from(
n__s(
X))]
LENGTH1(activate(n__from(n__s(X)))) →
LENGTH1(
n__from(
n__s(
X)))
with rule
activate(
X') →
X' at position [0] and matcher [
X' /
n__from(
n__s(
X))]
LENGTH1(n__from(n__s(X))) →
LENGTH(
from(
activate(
n__s(
X))))
with rule
LENGTH1(
n__from(
x0)) →
LENGTH(
from(
activate(
x0)))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(20) NO