(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
div(x, y) → div2(x, y, 0)
div2(x, y, i) → if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j) → divZeroError
if1(false, b, x, y, i, j) → if2(b, x, y, i, j)
if2(true, x, y, i, j) → div2(minus(x, y), y, j)
if2(false, x, y, i, j) → i
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
a → c
a → d
Q is empty.
(1) AAECC Innermost (EQUIVALENT transformation)
We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is
if2(false, x, y, i, j) → i
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
if1(false, b, x, y, i, j) → if2(b, x, y, i, j)
if2(true, x, y, i, j) → div2(minus(x, y), y, j)
div(x, y) → div2(x, y, 0)
div2(x, y, i) → if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j) → divZeroError
The TRS R 2 is
a → c
a → d
The signature Sigma is {
a,
c,
d}
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
div(x, y) → div2(x, y, 0)
div2(x, y, i) → if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j) → divZeroError
if1(false, b, x, y, i, j) → if2(b, x, y, i, j)
if2(true, x, y, i, j) → div2(minus(x, y), y, j)
if2(false, x, y, i, j) → i
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
a → c
a → d
The set Q consists of the following terms:
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(x, y) → DIV2(x, y, 0)
DIV2(x, y, i) → IF1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
DIV2(x, y, i) → LE(y, 0)
DIV2(x, y, i) → LE(y, x)
DIV2(x, y, i) → PLUS(i, 0)
DIV2(x, y, i) → INC(i)
IF1(false, b, x, y, i, j) → IF2(b, x, y, i, j)
IF2(true, x, y, i, j) → DIV2(minus(x, y), y, j)
IF2(true, x, y, i, j) → MINUS(x, y)
INC(s(i)) → INC(i)
LE(s(x), s(y)) → LE(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
PLUS(x, y) → PLUSITER(x, y, 0)
PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
PLUSITER(x, y, z) → LE(x, z)
IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
The TRS R consists of the following rules:
div(x, y) → div2(x, y, 0)
div2(x, y, i) → if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j) → divZeroError
if1(false, b, x, y, i, j) → if2(b, x, y, i, j)
if2(true, x, y, i, j) → div2(minus(x, y), y, j)
if2(false, x, y, i, j) → i
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
a → c
a → d
The set Q consists of the following terms:
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 8 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), s(y)) → MINUS(x, y)
The TRS R consists of the following rules:
div(x, y) → div2(x, y, 0)
div2(x, y, i) → if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j) → divZeroError
if1(false, b, x, y, i, j) → if2(b, x, y, i, j)
if2(true, x, y, i, j) → div2(minus(x, y), y, j)
if2(false, x, y, i, j) → i
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
a → c
a → d
The set Q consists of the following terms:
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), s(y)) → MINUS(x, y)
R is empty.
The set Q consists of the following terms:
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), s(y)) → MINUS(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MINUS(s(x), s(y)) → MINUS(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
The TRS R consists of the following rules:
div(x, y) → div2(x, y, 0)
div2(x, y, i) → if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j) → divZeroError
if1(false, b, x, y, i, j) → if2(b, x, y, i, j)
if2(true, x, y, i, j) → div2(minus(x, y), y, j)
if2(false, x, y, i, j) → i
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
a → c
a → d
The set Q consists of the following terms:
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
R is empty.
The set Q consists of the following terms:
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LE(s(x), s(y)) → LE(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
The TRS R consists of the following rules:
div(x, y) → div2(x, y, 0)
div2(x, y, i) → if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j) → divZeroError
if1(false, b, x, y, i, j) → if2(b, x, y, i, j)
if2(true, x, y, i, j) → div2(minus(x, y), y, j)
if2(false, x, y, i, j) → i
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
a → c
a → d
The set Q consists of the following terms:
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
The set Q consists of the following terms:
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(26) NonInfProof (EQUIVALENT transformation)
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
PLUSITER(
x,
y,
z) →
IFPLUS(
le(
x,
z),
x,
y,
z) the following chains were created:
- We consider the chain IFPLUS(false, x3, x4, x5) → PLUSITER(x3, s(x4), s(x5)), PLUSITER(x6, x7, x8) → IFPLUS(le(x6, x8), x6, x7, x8) which results in the following constraint:
(1) (PLUSITER(x3, s(x4), s(x5))=PLUSITER(x6, x7, x8) ⇒ PLUSITER(x6, x7, x8)≥IFPLUS(le(x6, x8), x6, x7, x8)) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (PLUSITER(x3, s(x4), s(x5))≥IFPLUS(le(x3, s(x5)), x3, s(x4), s(x5))) |
For Pair
IFPLUS(
false,
x,
y,
z) →
PLUSITER(
x,
s(
y),
s(
z)) the following chains were created:
- We consider the chain PLUSITER(x9, x10, x11) → IFPLUS(le(x9, x11), x9, x10, x11), IFPLUS(false, x12, x13, x14) → PLUSITER(x12, s(x13), s(x14)) which results in the following constraint:
(1) (IFPLUS(le(x9, x11), x9, x10, x11)=IFPLUS(false, x12, x13, x14) ⇒ IFPLUS(false, x12, x13, x14)≥PLUSITER(x12, s(x13), s(x14))) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (le(x9, x11)=false ⇒ IFPLUS(false, x9, x10, x11)≥PLUSITER(x9, s(x10), s(x11))) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on le(x9, x11)=false which results in the following new constraints:
(3) (false=false ⇒ IFPLUS(false, s(x18), x10, 0)≥PLUSITER(s(x18), s(x10), s(0))) |
(4) (le(x21, x20)=false∧(∀x22:le(x21, x20)=false ⇒ IFPLUS(false, x21, x22, x20)≥PLUSITER(x21, s(x22), s(x20))) ⇒ IFPLUS(false, s(x21), x10, s(x20))≥PLUSITER(s(x21), s(x10), s(s(x20)))) |
We simplified constraint (3) using rules (I), (II) which results in the following new constraint:
(5) (IFPLUS(false, s(x18), x10, 0)≥PLUSITER(s(x18), s(x10), s(0))) |
We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (∀x22:le(x21, x20)=false ⇒ IFPLUS(false, x21, x22, x20)≥PLUSITER(x21, s(x22), s(x20))) with σ = [x22 / x10] which results in the following new constraint:
(6) (IFPLUS(false, x21, x10, x20)≥PLUSITER(x21, s(x10), s(x20)) ⇒ IFPLUS(false, s(x21), x10, s(x20))≥PLUSITER(s(x21), s(x10), s(s(x20)))) |
To summarize, we get the following constraints P
≥ for the following pairs.
- PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
- (PLUSITER(x3, s(x4), s(x5))≥IFPLUS(le(x3, s(x5)), x3, s(x4), s(x5)))
- IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
- (IFPLUS(false, s(x18), x10, 0)≥PLUSITER(s(x18), s(x10), s(0)))
- (IFPLUS(false, x21, x10, x20)≥PLUSITER(x21, s(x10), s(x20)) ⇒ IFPLUS(false, s(x21), x10, s(x20))≥PLUSITER(s(x21), s(x10), s(s(x20))))
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:
POL(0) = 0
POL(IFPLUS(x1, x2, x3, x4)) = -1 + x2 - x4
POL(PLUSITER(x1, x2, x3)) = -1 + x1 - x3
POL(c) = -2
POL(false) = 0
POL(le(x1, x2)) = x2
POL(s(x1)) = 1 + x1
POL(true) = 1
The following pairs are in P
>:
IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
The following pairs are in P
bound:
IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
There are no usable rules
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(29) TRUE
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INC(s(i)) → INC(i)
The TRS R consists of the following rules:
div(x, y) → div2(x, y, 0)
div2(x, y, i) → if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j) → divZeroError
if1(false, b, x, y, i, j) → if2(b, x, y, i, j)
if2(true, x, y, i, j) → div2(minus(x, y), y, j)
if2(false, x, y, i, j) → i
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
a → c
a → d
The set Q consists of the following terms:
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
We have to consider all minimal (P,Q,R)-chains.
(31) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INC(s(i)) → INC(i)
R is empty.
The set Q consists of the following terms:
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
We have to consider all minimal (P,Q,R)-chains.
(33) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INC(s(i)) → INC(i)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- INC(s(i)) → INC(i)
The graph contains the following edges 1 > 1
(36) YES
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(false, b, x, y, i, j) → IF2(b, x, y, i, j)
IF2(true, x, y, i, j) → DIV2(minus(x, y), y, j)
DIV2(x, y, i) → IF1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
The TRS R consists of the following rules:
div(x, y) → div2(x, y, 0)
div2(x, y, i) → if1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
if1(true, b, x, y, i, j) → divZeroError
if1(false, b, x, y, i, j) → if2(b, x, y, i, j)
if2(true, x, y, i, j) → div2(minus(x, y), y, j)
if2(false, x, y, i, j) → i
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
a → c
a → d
The set Q consists of the following terms:
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
We have to consider all minimal (P,Q,R)-chains.
(38) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(false, b, x, y, i, j) → IF2(b, x, y, i, j)
IF2(true, x, y, i, j) → DIV2(minus(x, y), y, j)
DIV2(x, y, i) → IF1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plus(x, y) → plusIter(x, y, 0)
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
a
We have to consider all minimal (P,Q,R)-chains.
(40) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
div(x0, x1)
div2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4)
if1(false, x0, x1, x2, x3, x4)
if2(true, x0, x1, x2, x3)
if2(false, x0, x1, x2, x3)
a
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(false, b, x, y, i, j) → IF2(b, x, y, i, j)
IF2(true, x, y, i, j) → DIV2(minus(x, y), y, j)
DIV2(x, y, i) → IF1(le(y, 0), le(y, x), x, y, plus(i, 0), inc(i))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plus(x, y) → plusIter(x, y, 0)
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(42) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
DIV2(
x,
y,
i) →
IF1(
le(
y,
0),
le(
y,
x),
x,
y,
plus(
i,
0),
inc(
i)) at position [4] we obtained the following new rules [LPAR04]:
DIV2(x, y, i) → IF1(le(y, 0), le(y, x), x, y, plusIter(i, 0, 0), inc(i)) → DIV2(x, y, i) → IF1(le(y, 0), le(y, x), x, y, plusIter(i, 0, 0), inc(i))
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(false, b, x, y, i, j) → IF2(b, x, y, i, j)
IF2(true, x, y, i, j) → DIV2(minus(x, y), y, j)
DIV2(x, y, i) → IF1(le(y, 0), le(y, x), x, y, plusIter(i, 0, 0), inc(i))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plus(x, y) → plusIter(x, y, 0)
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(44) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(false, b, x, y, i, j) → IF2(b, x, y, i, j)
IF2(true, x, y, i, j) → DIV2(minus(x, y), y, j)
DIV2(x, y, i) → IF1(le(y, 0), le(y, x), x, y, plusIter(i, 0, 0), inc(i))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(46) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
plus(x0, x1)
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(false, b, x, y, i, j) → IF2(b, x, y, i, j)
IF2(true, x, y, i, j) → DIV2(minus(x, y), y, j)
DIV2(x, y, i) → IF1(le(y, 0), le(y, x), x, y, plusIter(i, 0, 0), inc(i))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(48) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
DIV2(
x,
y,
i) →
IF1(
le(
y,
0),
le(
y,
x),
x,
y,
plusIter(
i,
0,
0),
inc(
i)) at position [4] we obtained the following new rules [LPAR04]:
DIV2(x, y, i) → IF1(le(y, 0), le(y, x), x, y, ifPlus(le(i, 0), i, 0, 0), inc(i)) → DIV2(x, y, i) → IF1(le(y, 0), le(y, x), x, y, ifPlus(le(i, 0), i, 0, 0), inc(i))
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(false, b, x, y, i, j) → IF2(b, x, y, i, j)
IF2(true, x, y, i, j) → DIV2(minus(x, y), y, j)
DIV2(x, y, i) → IF1(le(y, 0), le(y, x), x, y, ifPlus(le(i, 0), i, 0, 0), inc(i))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(50) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
DIV2(
x,
y,
i) →
IF1(
le(
y,
0),
le(
y,
x),
x,
y,
ifPlus(
le(
i,
0),
i,
0,
0),
inc(
i)) at position [0] we obtained the following new rules [LPAR04]:
DIV2(y0, s(x0), y2) → IF1(false, le(s(x0), y0), y0, s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2)) → DIV2(y0, s(x0), y2) → IF1(false, le(s(x0), y0), y0, s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
DIV2(y0, 0, y2) → IF1(true, le(0, y0), y0, 0, ifPlus(le(y2, 0), y2, 0, 0), inc(y2)) → DIV2(y0, 0, y2) → IF1(true, le(0, y0), y0, 0, ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
(51) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(false, b, x, y, i, j) → IF2(b, x, y, i, j)
IF2(true, x, y, i, j) → DIV2(minus(x, y), y, j)
DIV2(y0, s(x0), y2) → IF1(false, le(s(x0), y0), y0, s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
DIV2(y0, 0, y2) → IF1(true, le(0, y0), y0, 0, ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(52) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(53) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(true, x, y, i, j) → DIV2(minus(x, y), y, j)
DIV2(y0, s(x0), y2) → IF1(false, le(s(x0), y0), y0, s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
IF1(false, b, x, y, i, j) → IF2(b, x, y, i, j)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(54) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF1(
false,
b,
x,
y,
i,
j) →
IF2(
b,
x,
y,
i,
j) we obtained the following new rules [LPAR04]:
IF1(false, y_0, z0, s(z1), y_2, y_3) → IF2(y_0, z0, s(z1), y_2, y_3) → IF1(false, y_0, z0, s(z1), y_2, y_3) → IF2(y_0, z0, s(z1), y_2, y_3)
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(true, x, y, i, j) → DIV2(minus(x, y), y, j)
DIV2(y0, s(x0), y2) → IF1(false, le(s(x0), y0), y0, s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
IF1(false, y_0, z0, s(z1), y_2, y_3) → IF2(y_0, z0, s(z1), y_2, y_3)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(56) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF2(
true,
x,
y,
i,
j) →
DIV2(
minus(
x,
y),
y,
j) we obtained the following new rules [LPAR04]:
IF2(true, z1, s(z2), z3, z4) → DIV2(minus(z1, s(z2)), s(z2), z4) → IF2(true, z1, s(z2), z3, z4) → DIV2(minus(z1, s(z2)), s(z2), z4)
(57) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV2(y0, s(x0), y2) → IF1(false, le(s(x0), y0), y0, s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
IF1(false, y_0, z0, s(z1), y_2, y_3) → IF2(y_0, z0, s(z1), y_2, y_3)
IF2(true, z1, s(z2), z3, z4) → DIV2(minus(z1, s(z2)), s(z2), z4)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(58) TransformationProof (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
IF1(
false,
y_0,
z0,
s(
z1),
y_2,
y_3) →
IF2(
y_0,
z0,
s(
z1),
y_2,
y_3) we obtained the following new rules [LPAR04]:
IF1(false, true, x1, s(x2), x3, x4) → IF2(true, x1, s(x2), x3, x4) → IF1(false, true, x1, s(x2), x3, x4) → IF2(true, x1, s(x2), x3, x4)
(59) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV2(y0, s(x0), y2) → IF1(false, le(s(x0), y0), y0, s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
IF2(true, z1, s(z2), z3, z4) → DIV2(minus(z1, s(z2)), s(z2), z4)
IF1(false, true, x1, s(x2), x3, x4) → IF2(true, x1, s(x2), x3, x4)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(60) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
DIV2(
y0,
s(
x0),
y2) →
IF1(
false,
le(
s(
x0),
y0),
y0,
s(
x0),
ifPlus(
le(
y2,
0),
y2,
0,
0),
inc(
y2)) at position [1] we obtained the following new rules [LPAR04]:
DIV2(0, s(x0), y2) → IF1(false, false, 0, s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2)) → DIV2(0, s(x0), y2) → IF1(false, false, 0, s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
DIV2(s(x1), s(x0), y2) → IF1(false, le(x0, x1), s(x1), s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2)) → DIV2(s(x1), s(x0), y2) → IF1(false, le(x0, x1), s(x1), s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(true, z1, s(z2), z3, z4) → DIV2(minus(z1, s(z2)), s(z2), z4)
IF1(false, true, x1, s(x2), x3, x4) → IF2(true, x1, s(x2), x3, x4)
DIV2(0, s(x0), y2) → IF1(false, false, 0, s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
DIV2(s(x1), s(x0), y2) → IF1(false, le(x0, x1), s(x1), s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(62) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV2(s(x1), s(x0), y2) → IF1(false, le(x0, x1), s(x1), s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
IF1(false, true, x1, s(x2), x3, x4) → IF2(true, x1, s(x2), x3, x4)
IF2(true, z1, s(z2), z3, z4) → DIV2(minus(z1, s(z2)), s(z2), z4)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(64) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IF2(
true,
z1,
s(
z2),
z3,
z4) →
DIV2(
minus(
z1,
s(
z2)),
s(
z2),
z4) at position [0] we obtained the following new rules [LPAR04]:
IF2(true, 0, s(y1), y2, y3) → DIV2(0, s(y1), y3) → IF2(true, 0, s(y1), y2, y3) → DIV2(0, s(y1), y3)
IF2(true, s(x0), s(x1), y2, y3) → DIV2(minus(x0, x1), s(x1), y3) → IF2(true, s(x0), s(x1), y2, y3) → DIV2(minus(x0, x1), s(x1), y3)
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV2(s(x1), s(x0), y2) → IF1(false, le(x0, x1), s(x1), s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
IF1(false, true, x1, s(x2), x3, x4) → IF2(true, x1, s(x2), x3, x4)
IF2(true, 0, s(y1), y2, y3) → DIV2(0, s(y1), y3)
IF2(true, s(x0), s(x1), y2, y3) → DIV2(minus(x0, x1), s(x1), y3)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(66) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(false, true, x1, s(x2), x3, x4) → IF2(true, x1, s(x2), x3, x4)
IF2(true, s(x0), s(x1), y2, y3) → DIV2(minus(x0, x1), s(x1), y3)
DIV2(s(x1), s(x0), y2) → IF1(false, le(x0, x1), s(x1), s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(68) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF1(
false,
true,
x1,
s(
x2),
x3,
x4) →
IF2(
true,
x1,
s(
x2),
x3,
x4) we obtained the following new rules [LPAR04]:
IF1(false, true, s(z0), s(z1), y_2, y_3) → IF2(true, s(z0), s(z1), y_2, y_3) → IF1(false, true, s(z0), s(z1), y_2, y_3) → IF2(true, s(z0), s(z1), y_2, y_3)
(69) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(true, s(x0), s(x1), y2, y3) → DIV2(minus(x0, x1), s(x1), y3)
DIV2(s(x1), s(x0), y2) → IF1(false, le(x0, x1), s(x1), s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
IF1(false, true, s(z0), s(z1), y_2, y_3) → IF2(true, s(z0), s(z1), y_2, y_3)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(70) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF2(true, s(x0), s(x1), y2, y3) → DIV2(minus(x0, x1), s(x1), y3)
IF1(false, true, s(z0), s(z1), y_2, y_3) → IF2(true, s(z0), s(z1), y_2, y_3)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( DIV2(x1, ..., x3) ) = 2x1 + 2x2 + 2 |
POL( minus(x1, x2) ) = x1 + 1 |
POL( IF1(x1, ..., x6) ) = 2x3 + 2x4 + 2 |
POL( ifPlus(x1, ..., x4) ) = x3 + 2 |
POL( le(x1, x2) ) = max{0, 2x1 + 2x2 - 2} |
POL( plusIter(x1, ..., x3) ) = x2 + x3 + 2 |
POL( IF2(x1, ..., x5) ) = max{0, x1 + 2x2 + 2x3 - 1} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
(71) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV2(s(x1), s(x0), y2) → IF1(false, le(x0, x1), s(x1), s(x0), ifPlus(le(y2, 0), y2, 0, 0), inc(y2))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
inc(0) → 0
inc(s(i)) → s(inc(i))
ifPlus(true, x, y, z) → y
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
The set Q consists of the following terms:
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
(72) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(73) TRUE