YES Termination w.r.t. Q proof of Secret_07_TRS_aprove08.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

gcd(x, y) → gcd2(x, y, 0)
gcd2(x, y, i) → if1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
if1(true, b1, b2, b3, x, y, i) → pair(result(y), neededIterations(i))
if1(false, b1, b2, b3, x, y, i) → if2(b1, b2, b3, x, y, i)
if2(true, b2, b3, x, y, i) → pair(result(x), neededIterations(i))
if2(false, b2, b3, x, y, i) → if3(b2, b3, x, y, i)
if3(false, b3, x, y, i) → gcd2(minus(x, y), y, i)
if3(true, b3, x, y, i) → if4(b3, x, y, i)
if4(false, x, y, i) → gcd2(x, minus(y, x), i)
if4(true, x, y, i) → pair(result(x), neededIterations(i))
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
ab
ac

Q is empty.

(1) AAECC Innermost (EQUIVALENT transformation)

We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is

inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)

The TRS R 2 is

gcd(x, y) → gcd2(x, y, 0)
gcd2(x, y, i) → if1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
if1(true, b1, b2, b3, x, y, i) → pair(result(y), neededIterations(i))
if1(false, b1, b2, b3, x, y, i) → if2(b1, b2, b3, x, y, i)
if2(true, b2, b3, x, y, i) → pair(result(x), neededIterations(i))
if2(false, b2, b3, x, y, i) → if3(b2, b3, x, y, i)
if3(false, b3, x, y, i) → gcd2(minus(x, y), y, i)
if3(true, b3, x, y, i) → if4(b3, x, y, i)
if4(false, x, y, i) → gcd2(x, minus(y, x), i)
if4(true, x, y, i) → pair(result(x), neededIterations(i))
ab
ac

The signature Sigma is {gcd, gcd2, if1, pair, if2, if3, if4, a, b, c}

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

gcd(x, y) → gcd2(x, y, 0)
gcd2(x, y, i) → if1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
if1(true, b1, b2, b3, x, y, i) → pair(result(y), neededIterations(i))
if1(false, b1, b2, b3, x, y, i) → if2(b1, b2, b3, x, y, i)
if2(true, b2, b3, x, y, i) → pair(result(x), neededIterations(i))
if2(false, b2, b3, x, y, i) → if3(b2, b3, x, y, i)
if3(false, b3, x, y, i) → gcd2(minus(x, y), y, i)
if3(true, b3, x, y, i) → if4(b3, x, y, i)
if4(false, x, y, i) → gcd2(x, minus(y, x), i)
if4(true, x, y, i) → pair(result(x), neededIterations(i))
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
ab
ac

The set Q consists of the following terms:

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GCD(x, y) → GCD2(x, y, 0)
GCD2(x, y, i) → IF1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
GCD2(x, y, i) → LE(x, 0)
GCD2(x, y, i) → LE(y, 0)
GCD2(x, y, i) → LE(x, y)
GCD2(x, y, i) → LE(y, x)
GCD2(x, y, i) → INC(i)
IF1(false, b1, b2, b3, x, y, i) → IF2(b1, b2, b3, x, y, i)
IF2(false, b2, b3, x, y, i) → IF3(b2, b3, x, y, i)
IF3(false, b3, x, y, i) → GCD2(minus(x, y), y, i)
IF3(false, b3, x, y, i) → MINUS(x, y)
IF3(true, b3, x, y, i) → IF4(b3, x, y, i)
IF4(false, x, y, i) → GCD2(x, minus(y, x), i)
IF4(false, x, y, i) → MINUS(y, x)
INC(s(i)) → INC(i)
LE(s(x), s(y)) → LE(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

gcd(x, y) → gcd2(x, y, 0)
gcd2(x, y, i) → if1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
if1(true, b1, b2, b3, x, y, i) → pair(result(y), neededIterations(i))
if1(false, b1, b2, b3, x, y, i) → if2(b1, b2, b3, x, y, i)
if2(true, b2, b3, x, y, i) → pair(result(x), neededIterations(i))
if2(false, b2, b3, x, y, i) → if3(b2, b3, x, y, i)
if3(false, b3, x, y, i) → gcd2(minus(x, y), y, i)
if3(true, b3, x, y, i) → if4(b3, x, y, i)
if4(false, x, y, i) → gcd2(x, minus(y, x), i)
if4(true, x, y, i) → pair(result(x), neededIterations(i))
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
ab
ac

The set Q consists of the following terms:

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 8 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

gcd(x, y) → gcd2(x, y, 0)
gcd2(x, y, i) → if1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
if1(true, b1, b2, b3, x, y, i) → pair(result(y), neededIterations(i))
if1(false, b1, b2, b3, x, y, i) → if2(b1, b2, b3, x, y, i)
if2(true, b2, b3, x, y, i) → pair(result(x), neededIterations(i))
if2(false, b2, b3, x, y, i) → if3(b2, b3, x, y, i)
if3(false, b3, x, y, i) → gcd2(minus(x, y), y, i)
if3(true, b3, x, y, i) → if4(b3, x, y, i)
if4(false, x, y, i) → gcd2(x, minus(y, x), i)
if4(true, x, y, i) → pair(result(x), neededIterations(i))
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
ab
ac

The set Q consists of the following terms:

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

R is empty.
The set Q consists of the following terms:

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUS(s(x), s(y)) → MINUS(x, y)
    The graph contains the following edges 1 > 1, 2 > 2

(13) YES

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

gcd(x, y) → gcd2(x, y, 0)
gcd2(x, y, i) → if1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
if1(true, b1, b2, b3, x, y, i) → pair(result(y), neededIterations(i))
if1(false, b1, b2, b3, x, y, i) → if2(b1, b2, b3, x, y, i)
if2(true, b2, b3, x, y, i) → pair(result(x), neededIterations(i))
if2(false, b2, b3, x, y, i) → if3(b2, b3, x, y, i)
if3(false, b3, x, y, i) → gcd2(minus(x, y), y, i)
if3(true, b3, x, y, i) → if4(b3, x, y, i)
if4(false, x, y, i) → gcd2(x, minus(y, x), i)
if4(true, x, y, i) → pair(result(x), neededIterations(i))
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
ab
ac

The set Q consists of the following terms:

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

We have to consider all minimal (P,Q,R)-chains.

(15) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

R is empty.
The set Q consists of the following terms:

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

We have to consider all minimal (P,Q,R)-chains.

(17) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LE(s(x), s(y)) → LE(x, y)
    The graph contains the following edges 1 > 1, 2 > 2

(20) YES

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INC(s(i)) → INC(i)

The TRS R consists of the following rules:

gcd(x, y) → gcd2(x, y, 0)
gcd2(x, y, i) → if1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
if1(true, b1, b2, b3, x, y, i) → pair(result(y), neededIterations(i))
if1(false, b1, b2, b3, x, y, i) → if2(b1, b2, b3, x, y, i)
if2(true, b2, b3, x, y, i) → pair(result(x), neededIterations(i))
if2(false, b2, b3, x, y, i) → if3(b2, b3, x, y, i)
if3(false, b3, x, y, i) → gcd2(minus(x, y), y, i)
if3(true, b3, x, y, i) → if4(b3, x, y, i)
if4(false, x, y, i) → gcd2(x, minus(y, x), i)
if4(true, x, y, i) → pair(result(x), neededIterations(i))
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
ab
ac

The set Q consists of the following terms:

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

We have to consider all minimal (P,Q,R)-chains.

(22) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INC(s(i)) → INC(i)

R is empty.
The set Q consists of the following terms:

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

We have to consider all minimal (P,Q,R)-chains.

(24) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INC(s(i)) → INC(i)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • INC(s(i)) → INC(i)
    The graph contains the following edges 1 > 1

(27) YES

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, b1, b2, b3, x, y, i) → IF2(b1, b2, b3, x, y, i)
IF2(false, b2, b3, x, y, i) → IF3(b2, b3, x, y, i)
IF3(false, b3, x, y, i) → GCD2(minus(x, y), y, i)
GCD2(x, y, i) → IF1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
IF3(true, b3, x, y, i) → IF4(b3, x, y, i)
IF4(false, x, y, i) → GCD2(x, minus(y, x), i)

The TRS R consists of the following rules:

gcd(x, y) → gcd2(x, y, 0)
gcd2(x, y, i) → if1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
if1(true, b1, b2, b3, x, y, i) → pair(result(y), neededIterations(i))
if1(false, b1, b2, b3, x, y, i) → if2(b1, b2, b3, x, y, i)
if2(true, b2, b3, x, y, i) → pair(result(x), neededIterations(i))
if2(false, b2, b3, x, y, i) → if3(b2, b3, x, y, i)
if3(false, b3, x, y, i) → gcd2(minus(x, y), y, i)
if3(true, b3, x, y, i) → if4(b3, x, y, i)
if4(false, x, y, i) → gcd2(x, minus(y, x), i)
if4(true, x, y, i) → pair(result(x), neededIterations(i))
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
ab
ac

The set Q consists of the following terms:

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

We have to consider all minimal (P,Q,R)-chains.

(29) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, b1, b2, b3, x, y, i) → IF2(b1, b2, b3, x, y, i)
IF2(false, b2, b3, x, y, i) → IF3(b2, b3, x, y, i)
IF3(false, b3, x, y, i) → GCD2(minus(x, y), y, i)
GCD2(x, y, i) → IF1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
IF3(true, b3, x, y, i) → IF4(b3, x, y, i)
IF4(false, x, y, i) → GCD2(x, minus(y, x), i)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))
a

We have to consider all minimal (P,Q,R)-chains.

(31) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

gcd(x0, x1)
gcd2(x0, x1, x2)
if1(true, x0, x1, x2, x3, x4, x5)
if1(false, x0, x1, x2, x3, x4, x5)
if2(true, x0, x1, x2, x3, x4)
if2(false, x0, x1, x2, x3, x4)
if3(false, x0, x1, x2, x3)
if3(true, x0, x1, x2, x3)
if4(false, x0, x1, x2)
if4(true, x0, x1, x2)
a

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, b1, b2, b3, x, y, i) → IF2(b1, b2, b3, x, y, i)
IF2(false, b2, b3, x, y, i) → IF3(b2, b3, x, y, i)
IF3(false, b3, x, y, i) → GCD2(minus(x, y), y, i)
GCD2(x, y, i) → IF1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
IF3(true, b3, x, y, i) → IF4(b3, x, y, i)
IF4(false, x, y, i) → GCD2(x, minus(y, x), i)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(33) QDPQMonotonicMRRProof (EQUIVALENT transformation)

By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain.

Strictly oriented rules of the TRS R:

minus(s(x), s(y)) → minus(x, y)

Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(GCD2(x1, x2, x3)) = 2 + x1 + 2·x2   
POL(IF1(x1, x2, x3, x4, x5, x6, x7)) = 2 + x5 + 2·x6   
POL(IF2(x1, x2, x3, x4, x5, x6)) = 2 + x4 + 2·x5   
POL(IF3(x1, x2, x3, x4, x5)) = 2 + x3 + 2·x4   
POL(IF4(x1, x2, x3, x4)) = 2 + x2 + 2·x3   
POL(false) = 0   
POL(inc(x1)) = 2 + 2·x1   
POL(le(x1, x2)) = 0   
POL(minus(x1, x2)) = x1   
POL(s(x1)) = 2 + 2·x1   
POL(true) = 0   

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, b1, b2, b3, x, y, i) → IF2(b1, b2, b3, x, y, i)
IF2(false, b2, b3, x, y, i) → IF3(b2, b3, x, y, i)
IF3(false, b3, x, y, i) → GCD2(minus(x, y), y, i)
GCD2(x, y, i) → IF1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
IF3(true, b3, x, y, i) → IF4(b3, x, y, i)
IF4(false, x, y, i) → GCD2(x, minus(y, x), i)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(35) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule GCD2(x, y, i) → IF1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i)) at position [0] we obtained the following new rules [LPAR04]:

GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2)) → GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2))
GCD2(0, y1, y2) → IF1(true, le(y1, 0), le(0, y1), le(y1, 0), 0, y1, inc(y2)) → GCD2(0, y1, y2) → IF1(true, le(y1, 0), le(0, y1), le(y1, 0), 0, y1, inc(y2))

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF1(false, b1, b2, b3, x, y, i) → IF2(b1, b2, b3, x, y, i)
IF2(false, b2, b3, x, y, i) → IF3(b2, b3, x, y, i)
IF3(false, b3, x, y, i) → GCD2(minus(x, y), y, i)
IF3(true, b3, x, y, i) → IF4(b3, x, y, i)
IF4(false, x, y, i) → GCD2(x, minus(y, x), i)
GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2))
GCD2(0, y1, y2) → IF1(true, le(y1, 0), le(0, y1), le(y1, 0), 0, y1, inc(y2))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(37) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, b2, b3, x, y, i) → IF3(b2, b3, x, y, i)
IF3(false, b3, x, y, i) → GCD2(minus(x, y), y, i)
GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2))
IF1(false, b1, b2, b3, x, y, i) → IF2(b1, b2, b3, x, y, i)
IF3(true, b3, x, y, i) → IF4(b3, x, y, i)
IF4(false, x, y, i) → GCD2(x, minus(y, x), i)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(39) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule IF3(false, b3, x, y, i) → GCD2(minus(x, y), y, i) at position [0] we obtained the following new rules [LPAR04]:

IF3(false, y0, x0, 0, y3) → GCD2(x0, 0, y3) → IF3(false, y0, x0, 0, y3) → GCD2(x0, 0, y3)
IF3(false, y0, 0, x0, y3) → GCD2(0, x0, y3) → IF3(false, y0, 0, x0, y3) → GCD2(0, x0, y3)

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, b2, b3, x, y, i) → IF3(b2, b3, x, y, i)
GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2))
IF1(false, b1, b2, b3, x, y, i) → IF2(b1, b2, b3, x, y, i)
IF3(true, b3, x, y, i) → IF4(b3, x, y, i)
IF4(false, x, y, i) → GCD2(x, minus(y, x), i)
IF3(false, y0, x0, 0, y3) → GCD2(x0, 0, y3)
IF3(false, y0, 0, x0, y3) → GCD2(0, x0, y3)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(41) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, b3, x, y, i) → IF4(b3, x, y, i)
IF4(false, x, y, i) → GCD2(x, minus(y, x), i)
GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2))
IF1(false, b1, b2, b3, x, y, i) → IF2(b1, b2, b3, x, y, i)
IF2(false, b2, b3, x, y, i) → IF3(b2, b3, x, y, i)
IF3(false, y0, x0, 0, y3) → GCD2(x0, 0, y3)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(43) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF1(false, b1, b2, b3, x, y, i) → IF2(b1, b2, b3, x, y, i) we obtained the following new rules [LPAR04]:

IF1(false, y_0, y_1, y_2, s(z0), z1, y_3) → IF2(y_0, y_1, y_2, s(z0), z1, y_3) → IF1(false, y_0, y_1, y_2, s(z0), z1, y_3) → IF2(y_0, y_1, y_2, s(z0), z1, y_3)

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, b3, x, y, i) → IF4(b3, x, y, i)
IF4(false, x, y, i) → GCD2(x, minus(y, x), i)
GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2))
IF2(false, b2, b3, x, y, i) → IF3(b2, b3, x, y, i)
IF3(false, y0, x0, 0, y3) → GCD2(x0, 0, y3)
IF1(false, y_0, y_1, y_2, s(z0), z1, y_3) → IF2(y_0, y_1, y_2, s(z0), z1, y_3)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(45) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF2(false, b2, b3, x, y, i) → IF3(b2, b3, x, y, i) we obtained the following new rules [LPAR04]:

IF2(false, z1, z2, s(z3), z4, z5) → IF3(z1, z2, s(z3), z4, z5) → IF2(false, z1, z2, s(z3), z4, z5) → IF3(z1, z2, s(z3), z4, z5)

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF3(true, b3, x, y, i) → IF4(b3, x, y, i)
IF4(false, x, y, i) → GCD2(x, minus(y, x), i)
GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2))
IF3(false, y0, x0, 0, y3) → GCD2(x0, 0, y3)
IF1(false, y_0, y_1, y_2, s(z0), z1, y_3) → IF2(y_0, y_1, y_2, s(z0), z1, y_3)
IF2(false, z1, z2, s(z3), z4, z5) → IF3(z1, z2, s(z3), z4, z5)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(47) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF3(true, b3, x, y, i) → IF4(b3, x, y, i) we obtained the following new rules [LPAR04]:

IF3(true, z1, s(z2), z3, z4) → IF4(z1, s(z2), z3, z4) → IF3(true, z1, s(z2), z3, z4) → IF4(z1, s(z2), z3, z4)

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF4(false, x, y, i) → GCD2(x, minus(y, x), i)
GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2))
IF3(false, y0, x0, 0, y3) → GCD2(x0, 0, y3)
IF1(false, y_0, y_1, y_2, s(z0), z1, y_3) → IF2(y_0, y_1, y_2, s(z0), z1, y_3)
IF2(false, z1, z2, s(z3), z4, z5) → IF3(z1, z2, s(z3), z4, z5)
IF3(true, z1, s(z2), z3, z4) → IF4(z1, s(z2), z3, z4)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(49) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF4(false, x, y, i) → GCD2(x, minus(y, x), i) we obtained the following new rules [LPAR04]:

IF4(false, s(z1), z2, z3) → GCD2(s(z1), minus(z2, s(z1)), z3) → IF4(false, s(z1), z2, z3) → GCD2(s(z1), minus(z2, s(z1)), z3)

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2))
IF3(false, y0, x0, 0, y3) → GCD2(x0, 0, y3)
IF1(false, y_0, y_1, y_2, s(z0), z1, y_3) → IF2(y_0, y_1, y_2, s(z0), z1, y_3)
IF2(false, z1, z2, s(z3), z4, z5) → IF3(z1, z2, s(z3), z4, z5)
IF3(true, z1, s(z2), z3, z4) → IF4(z1, s(z2), z3, z4)
IF4(false, s(z1), z2, z3) → GCD2(s(z1), minus(z2, s(z1)), z3)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(51) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2))
IF3(false, y0, x0, 0, y3) → GCD2(x0, 0, y3)
IF1(false, y_0, y_1, y_2, s(z0), z1, y_3) → IF2(y_0, y_1, y_2, s(z0), z1, y_3)
IF2(false, z1, z2, s(z3), z4, z5) → IF3(z1, z2, s(z3), z4, z5)
IF3(true, z1, s(z2), z3, z4) → IF4(z1, s(z2), z3, z4)
IF4(false, s(z1), z2, z3) → GCD2(s(z1), minus(z2, s(z1)), z3)

The TRS R consists of the following rules:

minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(53) TransformationProof (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IF3(false, y0, x0, 0, y3) → GCD2(x0, 0, y3) we obtained the following new rules [LPAR04]:

IF3(false, z1, s(z2), 0, z4) → GCD2(s(z2), 0, z4) → IF3(false, z1, s(z2), 0, z4) → GCD2(s(z2), 0, z4)

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2))
IF1(false, y_0, y_1, y_2, s(z0), z1, y_3) → IF2(y_0, y_1, y_2, s(z0), z1, y_3)
IF2(false, z1, z2, s(z3), z4, z5) → IF3(z1, z2, s(z3), z4, z5)
IF3(true, z1, s(z2), z3, z4) → IF4(z1, s(z2), z3, z4)
IF4(false, s(z1), z2, z3) → GCD2(s(z1), minus(z2, s(z1)), z3)
IF3(false, z1, s(z2), 0, z4) → GCD2(s(z2), 0, z4)

The TRS R consists of the following rules:

minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(55) TransformationProof (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IF1(false, y_0, y_1, y_2, s(z0), z1, y_3) → IF2(y_0, y_1, y_2, s(z0), z1, y_3) we obtained the following new rules [LPAR04]:

IF1(false, false, x1, x2, s(x3), x4, x5) → IF2(false, x1, x2, s(x3), x4, x5) → IF1(false, false, x1, x2, s(x3), x4, x5) → IF2(false, x1, x2, s(x3), x4, x5)

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2))
IF2(false, z1, z2, s(z3), z4, z5) → IF3(z1, z2, s(z3), z4, z5)
IF3(true, z1, s(z2), z3, z4) → IF4(z1, s(z2), z3, z4)
IF4(false, s(z1), z2, z3) → GCD2(s(z1), minus(z2, s(z1)), z3)
IF3(false, z1, s(z2), 0, z4) → GCD2(s(z2), 0, z4)
IF1(false, false, x1, x2, s(x3), x4, x5) → IF2(false, x1, x2, s(x3), x4, x5)

The TRS R consists of the following rules:

minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(57) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule GCD2(s(x0), y1, y2) → IF1(false, le(y1, 0), le(s(x0), y1), le(y1, s(x0)), s(x0), y1, inc(y2)) at position [1] we obtained the following new rules [LPAR04]:

GCD2(s(y0), s(x0), y2) → IF1(false, false, le(s(y0), s(x0)), le(s(x0), s(y0)), s(y0), s(x0), inc(y2)) → GCD2(s(y0), s(x0), y2) → IF1(false, false, le(s(y0), s(x0)), le(s(x0), s(y0)), s(y0), s(x0), inc(y2))
GCD2(s(y0), 0, y2) → IF1(false, true, le(s(y0), 0), le(0, s(y0)), s(y0), 0, inc(y2)) → GCD2(s(y0), 0, y2) → IF1(false, true, le(s(y0), 0), le(0, s(y0)), s(y0), 0, inc(y2))

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF2(false, z1, z2, s(z3), z4, z5) → IF3(z1, z2, s(z3), z4, z5)
IF3(true, z1, s(z2), z3, z4) → IF4(z1, s(z2), z3, z4)
IF4(false, s(z1), z2, z3) → GCD2(s(z1), minus(z2, s(z1)), z3)
IF3(false, z1, s(z2), 0, z4) → GCD2(s(z2), 0, z4)
IF1(false, false, x1, x2, s(x3), x4, x5) → IF2(false, x1, x2, s(x3), x4, x5)
GCD2(s(y0), s(x0), y2) → IF1(false, false, le(s(y0), s(x0)), le(s(x0), s(y0)), s(y0), s(x0), inc(y2))
GCD2(s(y0), 0, y2) → IF1(false, true, le(s(y0), 0), le(0, s(y0)), s(y0), 0, inc(y2))

The TRS R consists of the following rules:

minus(0, y) → 0
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(i)) → s(inc(i))

The set Q consists of the following terms:

inc(0)
inc(s(x0))
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
minus(x0, 0)
minus(0, x0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(59) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 7 less nodes.

(60) TRUE