(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
sum(xs) → sumIter(xs, 0)
sumIter(xs, x) → ifSum(isempty(xs), xs, x, plus(x, head(xs)))
ifSum(true, xs, x, y) → x
ifSum(false, xs, x, y) → sumIter(tail(xs), y)
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
a → b
a → c
Q is empty.
(1) AAECC Innermost (EQUIVALENT transformation)
We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
ifSum(true, xs, x, y) → x
ifSum(false, xs, x, y) → sumIter(tail(xs), y)
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
sum(xs) → sumIter(xs, 0)
sumIter(xs, x) → ifSum(isempty(xs), xs, x, plus(x, head(xs)))
The TRS R 2 is
a → b
a → c
The signature Sigma is {
a,
b,
c}
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
sum(xs) → sumIter(xs, 0)
sumIter(xs, x) → ifSum(isempty(xs), xs, x, plus(x, head(xs)))
ifSum(true, xs, x, y) → x
ifSum(false, xs, x, y) → sumIter(tail(xs), y)
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
a → b
a → c
The set Q consists of the following terms:
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
sum(x0)
sumIter(x0, x1)
ifSum(true, x0, x1, x2)
ifSum(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
a
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(x, y) → PLUSITER(x, y, 0)
PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
PLUSITER(x, y, z) → LE(x, z)
IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
LE(s(x), s(y)) → LE(x, y)
SUM(xs) → SUMITER(xs, 0)
SUMITER(xs, x) → IFSUM(isempty(xs), xs, x, plus(x, head(xs)))
SUMITER(xs, x) → ISEMPTY(xs)
SUMITER(xs, x) → PLUS(x, head(xs))
SUMITER(xs, x) → HEAD(xs)
IFSUM(false, xs, x, y) → SUMITER(tail(xs), y)
IFSUM(false, xs, x, y) → TAIL(xs)
The TRS R consists of the following rules:
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
sum(xs) → sumIter(xs, 0)
sumIter(xs, x) → ifSum(isempty(xs), xs, x, plus(x, head(xs)))
ifSum(true, xs, x, y) → x
ifSum(false, xs, x, y) → sumIter(tail(xs), y)
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
a → b
a → c
The set Q consists of the following terms:
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
sum(x0)
sumIter(x0, x1)
ifSum(true, x0, x1, x2)
ifSum(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
a
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 7 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
The TRS R consists of the following rules:
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
sum(xs) → sumIter(xs, 0)
sumIter(xs, x) → ifSum(isempty(xs), xs, x, plus(x, head(xs)))
ifSum(true, xs, x, y) → x
ifSum(false, xs, x, y) → sumIter(tail(xs), y)
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
a → b
a → c
The set Q consists of the following terms:
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
sum(x0)
sumIter(x0, x1)
ifSum(true, x0, x1, x2)
ifSum(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
a
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
R is empty.
The set Q consists of the following terms:
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
sum(x0)
sumIter(x0, x1)
ifSum(true, x0, x1, x2)
ifSum(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
a
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
sum(x0)
sumIter(x0, x1)
ifSum(true, x0, x1, x2)
ifSum(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
a
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LE(s(x), s(y)) → LE(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
The TRS R consists of the following rules:
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
sum(xs) → sumIter(xs, 0)
sumIter(xs, x) → ifSum(isempty(xs), xs, x, plus(x, head(xs)))
ifSum(true, xs, x, y) → x
ifSum(false, xs, x, y) → sumIter(tail(xs), y)
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
a → b
a → c
The set Q consists of the following terms:
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
sum(x0)
sumIter(x0, x1)
ifSum(true, x0, x1, x2)
ifSum(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
a
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
The set Q consists of the following terms:
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
sum(x0)
sumIter(x0, x1)
ifSum(true, x0, x1, x2)
ifSum(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
a
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
sum(x0)
sumIter(x0, x1)
ifSum(true, x0, x1, x2)
ifSum(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
a
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(19) NonInfProof (EQUIVALENT transformation)
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
IFPLUS(
false,
x,
y,
z) →
PLUSITER(
x,
s(
y),
s(
z)) the following chains were created:
- We consider the chain PLUSITER(x3, x4, x5) → IFPLUS(le(x3, x5), x3, x4, x5), IFPLUS(false, x6, x7, x8) → PLUSITER(x6, s(x7), s(x8)) which results in the following constraint:
(1) (IFPLUS(le(x3, x5), x3, x4, x5)=IFPLUS(false, x6, x7, x8) ⇒ IFPLUS(false, x6, x7, x8)≥PLUSITER(x6, s(x7), s(x8))) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (le(x3, x5)=false ⇒ IFPLUS(false, x3, x4, x5)≥PLUSITER(x3, s(x4), s(x5))) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on le(x3, x5)=false which results in the following new constraints:
(3) (false=false ⇒ IFPLUS(false, s(x18), x4, 0)≥PLUSITER(s(x18), s(x4), s(0))) |
(4) (le(x21, x20)=false∧(∀x22:le(x21, x20)=false ⇒ IFPLUS(false, x21, x22, x20)≥PLUSITER(x21, s(x22), s(x20))) ⇒ IFPLUS(false, s(x21), x4, s(x20))≥PLUSITER(s(x21), s(x4), s(s(x20)))) |
We simplified constraint (3) using rules (I), (II) which results in the following new constraint:
(5) (IFPLUS(false, s(x18), x4, 0)≥PLUSITER(s(x18), s(x4), s(0))) |
We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (∀x22:le(x21, x20)=false ⇒ IFPLUS(false, x21, x22, x20)≥PLUSITER(x21, s(x22), s(x20))) with σ = [x22 / x4] which results in the following new constraint:
(6) (IFPLUS(false, x21, x4, x20)≥PLUSITER(x21, s(x4), s(x20)) ⇒ IFPLUS(false, s(x21), x4, s(x20))≥PLUSITER(s(x21), s(x4), s(s(x20)))) |
For Pair
PLUSITER(
x,
y,
z) →
IFPLUS(
le(
x,
z),
x,
y,
z) the following chains were created:
- We consider the chain IFPLUS(false, x9, x10, x11) → PLUSITER(x9, s(x10), s(x11)), PLUSITER(x12, x13, x14) → IFPLUS(le(x12, x14), x12, x13, x14) which results in the following constraint:
(1) (PLUSITER(x9, s(x10), s(x11))=PLUSITER(x12, x13, x14) ⇒ PLUSITER(x12, x13, x14)≥IFPLUS(le(x12, x14), x12, x13, x14)) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (PLUSITER(x9, s(x10), s(x11))≥IFPLUS(le(x9, s(x11)), x9, s(x10), s(x11))) |
To summarize, we get the following constraints P
≥ for the following pairs.
- IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
- (IFPLUS(false, s(x18), x4, 0)≥PLUSITER(s(x18), s(x4), s(0)))
- (IFPLUS(false, x21, x4, x20)≥PLUSITER(x21, s(x4), s(x20)) ⇒ IFPLUS(false, s(x21), x4, s(x20))≥PLUSITER(s(x21), s(x4), s(s(x20))))
- PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
- (PLUSITER(x9, s(x10), s(x11))≥IFPLUS(le(x9, s(x11)), x9, s(x10), s(x11)))
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:
POL(0) = 0
POL(IFPLUS(x1, x2, x3, x4)) = x2 - x4
POL(PLUSITER(x1, x2, x3)) = 1 + x1 - x3
POL(c) = -1
POL(false) = 1
POL(le(x1, x2)) = 1 + x2
POL(s(x1)) = 1 + x1
POL(true) = 1
The following pairs are in P
>:
PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
The following pairs are in P
bound:
IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
There are no usable rules
(20) Complex Obligation (AND)
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFPLUS(false, x, y, z) → PLUSITER(x, s(y), s(z))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(22) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(23) TRUE
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUSITER(x, y, z) → IFPLUS(le(x, z), x, y, z)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(26) TRUE
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMITER(xs, x) → IFSUM(isempty(xs), xs, x, plus(x, head(xs)))
IFSUM(false, xs, x, y) → SUMITER(tail(xs), y)
The TRS R consists of the following rules:
plus(x, y) → plusIter(x, y, 0)
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
ifPlus(true, x, y, z) → y
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
sum(xs) → sumIter(xs, 0)
sumIter(xs, x) → ifSum(isempty(xs), xs, x, plus(x, head(xs)))
ifSum(true, xs, x, y) → x
ifSum(false, xs, x, y) → sumIter(tail(xs), y)
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
a → b
a → c
The set Q consists of the following terms:
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
sum(x0)
sumIter(x0, x1)
ifSum(true, x0, x1, x2)
ifSum(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
a
We have to consider all minimal (P,Q,R)-chains.
(28) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMITER(xs, x) → IFSUM(isempty(xs), xs, x, plus(x, head(xs)))
IFSUM(false, xs, x, y) → SUMITER(tail(xs), y)
The TRS R consists of the following rules:
tail(nil) → nil
tail(cons(x, xs)) → xs
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
plus(x, y) → plusIter(x, y, 0)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
ifPlus(true, x, y, z) → y
The set Q consists of the following terms:
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
sum(x0)
sumIter(x0, x1)
ifSum(true, x0, x1, x2)
ifSum(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
a
We have to consider all minimal (P,Q,R)-chains.
(30) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
sum(x0)
sumIter(x0, x1)
ifSum(true, x0, x1, x2)
ifSum(false, x0, x1, x2)
a
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMITER(xs, x) → IFSUM(isempty(xs), xs, x, plus(x, head(xs)))
IFSUM(false, xs, x, y) → SUMITER(tail(xs), y)
The TRS R consists of the following rules:
tail(nil) → nil
tail(cons(x, xs)) → xs
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
plus(x, y) → plusIter(x, y, 0)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
ifPlus(true, x, y, z) → y
The set Q consists of the following terms:
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(32) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IFSUM(false, xs, x, y) → SUMITER(tail(xs), y)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO,RATPOLO]:
POL(0) = 0
POL(IFSUM(x1, x2, x3, x4)) = [1/4] + x1 + [1/4]x2
POL(SUMITER(x1, x2)) = [1/2] + [1/2]x1
POL(cons(x1, x2)) = [4] + [4]x1 + [2]x2
POL(error) = 0
POL(false) = [1]
POL(head(x1)) = 0
POL(ifPlus(x1, x2, x3, x4)) = [1/2] + x2 + [4]x3 + x4
POL(isempty(x1)) = [1/4] + [1/4]x1
POL(le(x1, x2)) = [1] + [1/4]x2
POL(nil) = [1/2]
POL(plus(x1, x2)) = [4] + x1 + [4]x2
POL(plusIter(x1, x2, x3)) = [1/2] + x1 + [4]x2 + x3
POL(s(x1)) = x1
POL(tail(x1)) = [1] + [1/2]x1
POL(true) = 0
The value of delta used in the strict ordering is 1/4.
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
isempty(nil) → true
isempty(cons(x, xs)) → false
tail(nil) → nil
tail(cons(x, xs)) → xs
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMITER(xs, x) → IFSUM(isempty(xs), xs, x, plus(x, head(xs)))
The TRS R consists of the following rules:
tail(nil) → nil
tail(cons(x, xs)) → xs
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
plus(x, y) → plusIter(x, y, 0)
ifPlus(false, x, y, z) → plusIter(x, s(y), s(z))
plusIter(x, y, z) → ifPlus(le(x, z), x, y, z)
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
ifPlus(true, x, y, z) → y
The set Q consists of the following terms:
plus(x0, x1)
plusIter(x0, x1, x2)
ifPlus(true, x0, x1, x2)
ifPlus(false, x0, x1, x2)
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(34) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(35) TRUE