(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
if(true, x, y, z) → z
if(false, x, y, z) → loop(x, double(y), s(z))
maplog(xs) → mapIter(xs, nil)
mapIter(xs, ys) → ifmap(isempty(xs), xs, ys)
ifmap(true, xs, ys) → ys
ifmap(false, xs, ys) → mapIter(droplast(xs), cons(log(last(xs)), ys))
isempty(nil) → true
isempty(cons(x, xs)) → false
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
a → b
a → c
Q is empty.
(1) AAECC Innermost (EQUIVALENT transformation)
We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is
double(0) → 0
double(s(x)) → s(s(double(x)))
if(true, x, y, z) → z
if(false, x, y, z) → loop(x, double(y), s(z))
ifmap(true, xs, ys) → ys
ifmap(false, xs, ys) → mapIter(droplast(xs), cons(log(last(xs)), ys))
isempty(nil) → true
isempty(cons(x, xs)) → false
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
maplog(xs) → mapIter(xs, nil)
mapIter(xs, ys) → ifmap(isempty(xs), xs, ys)
The TRS R 2 is
a → b
a → c
The signature Sigma is {
a,
b,
c}
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
if(true, x, y, z) → z
if(false, x, y, z) → loop(x, double(y), s(z))
maplog(xs) → mapIter(xs, nil)
mapIter(xs, ys) → ifmap(isempty(xs), xs, ys)
ifmap(true, xs, ys) → ys
ifmap(false, xs, ys) → mapIter(droplast(xs), cons(log(last(xs)), ys))
isempty(nil) → true
isempty(cons(x, xs)) → false
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
a → b
a → c
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
DOUBLE(s(x)) → DOUBLE(x)
LOG(s(x)) → LOOP(s(x), s(0), 0)
LOOP(x, s(y), z) → IF(le(x, s(y)), x, s(y), z)
LOOP(x, s(y), z) → LE(x, s(y))
IF(false, x, y, z) → LOOP(x, double(y), s(z))
IF(false, x, y, z) → DOUBLE(y)
MAPLOG(xs) → MAPITER(xs, nil)
MAPITER(xs, ys) → IFMAP(isempty(xs), xs, ys)
MAPITER(xs, ys) → ISEMPTY(xs)
IFMAP(false, xs, ys) → MAPITER(droplast(xs), cons(log(last(xs)), ys))
IFMAP(false, xs, ys) → DROPLAST(xs)
IFMAP(false, xs, ys) → LOG(last(xs))
IFMAP(false, xs, ys) → LAST(xs)
LAST(cons(x, cons(y, xs))) → LAST(cons(y, xs))
DROPLAST(cons(x, cons(y, xs))) → DROPLAST(cons(y, xs))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
if(true, x, y, z) → z
if(false, x, y, z) → loop(x, double(y), s(z))
maplog(xs) → mapIter(xs, nil)
mapIter(xs, ys) → ifmap(isempty(xs), xs, ys)
ifmap(true, xs, ys) → ys
ifmap(false, xs, ys) → mapIter(droplast(xs), cons(log(last(xs)), ys))
isempty(nil) → true
isempty(cons(x, xs)) → false
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
a → b
a → c
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 8 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DROPLAST(cons(x, cons(y, xs))) → DROPLAST(cons(y, xs))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
if(true, x, y, z) → z
if(false, x, y, z) → loop(x, double(y), s(z))
maplog(xs) → mapIter(xs, nil)
mapIter(xs, ys) → ifmap(isempty(xs), xs, ys)
ifmap(true, xs, ys) → ys
ifmap(false, xs, ys) → mapIter(droplast(xs), cons(log(last(xs)), ys))
isempty(nil) → true
isempty(cons(x, xs)) → false
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
a → b
a → c
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DROPLAST(cons(x, cons(y, xs))) → DROPLAST(cons(y, xs))
R is empty.
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DROPLAST(cons(x, cons(y, xs))) → DROPLAST(cons(y, xs))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DROPLAST(cons(x, cons(y, xs))) → DROPLAST(cons(y, xs))
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LAST(cons(x, cons(y, xs))) → LAST(cons(y, xs))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
if(true, x, y, z) → z
if(false, x, y, z) → loop(x, double(y), s(z))
maplog(xs) → mapIter(xs, nil)
mapIter(xs, ys) → ifmap(isempty(xs), xs, ys)
ifmap(true, xs, ys) → ys
ifmap(false, xs, ys) → mapIter(droplast(xs), cons(log(last(xs)), ys))
isempty(nil) → true
isempty(cons(x, xs)) → false
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
a → b
a → c
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LAST(cons(x, cons(y, xs))) → LAST(cons(y, xs))
R is empty.
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LAST(cons(x, cons(y, xs))) → LAST(cons(y, xs))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LAST(cons(x, cons(y, xs))) → LAST(cons(y, xs))
The graph contains the following edges 1 > 1
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DOUBLE(s(x)) → DOUBLE(x)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
if(true, x, y, z) → z
if(false, x, y, z) → loop(x, double(y), s(z))
maplog(xs) → mapIter(xs, nil)
mapIter(xs, ys) → ifmap(isempty(xs), xs, ys)
ifmap(true, xs, ys) → ys
ifmap(false, xs, ys) → mapIter(droplast(xs), cons(log(last(xs)), ys))
isempty(nil) → true
isempty(cons(x, xs)) → false
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
a → b
a → c
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DOUBLE(s(x)) → DOUBLE(x)
R is empty.
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DOUBLE(s(x)) → DOUBLE(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DOUBLE(s(x)) → DOUBLE(x)
The graph contains the following edges 1 > 1
(27) YES
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
if(true, x, y, z) → z
if(false, x, y, z) → loop(x, double(y), s(z))
maplog(xs) → mapIter(xs, nil)
mapIter(xs, ys) → ifmap(isempty(xs), xs, ys)
ifmap(true, xs, ys) → ys
ifmap(false, xs, ys) → mapIter(droplast(xs), cons(log(last(xs)), ys))
isempty(nil) → true
isempty(cons(x, xs)) → false
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
a → b
a → c
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(29) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
R is empty.
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(31) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s(x), s(y)) → LE(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LE(s(x), s(y)) → LE(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(34) YES
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LOOP(x, s(y), z) → IF(le(x, s(y)), x, s(y), z)
IF(false, x, y, z) → LOOP(x, double(y), s(z))
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
if(true, x, y, z) → z
if(false, x, y, z) → loop(x, double(y), s(z))
maplog(xs) → mapIter(xs, nil)
mapIter(xs, ys) → ifmap(isempty(xs), xs, ys)
ifmap(true, xs, ys) → ys
ifmap(false, xs, ys) → mapIter(droplast(xs), cons(log(last(xs)), ys))
isempty(nil) → true
isempty(cons(x, xs)) → false
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
a → b
a → c
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(36) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LOOP(x, s(y), z) → IF(le(x, s(y)), x, s(y), z)
IF(false, x, y, z) → LOOP(x, double(y), s(z))
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
le(0, y) → true
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(38) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LOOP(x, s(y), z) → IF(le(x, s(y)), x, s(y), z)
IF(false, x, y, z) → LOOP(x, double(y), s(z))
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
le(0, y) → true
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
We have to consider all minimal (P,Q,R)-chains.
(40) NonInfProof (EQUIVALENT transformation)
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
LOOP(
x,
s(
y),
z) →
IF(
le(
x,
s(
y)),
x,
s(
y),
z) the following chains were created:
- We consider the chain LOOP(x3, s(x4), x5) → IF(le(x3, s(x4)), x3, s(x4), x5), IF(false, x6, x7, x8) → LOOP(x6, double(x7), s(x8)) which results in the following constraint:
(1) (IF(le(x3, s(x4)), x3, s(x4), x5)=IF(false, x6, x7, x8) ⇒ LOOP(x3, s(x4), x5)≥IF(le(x3, s(x4)), x3, s(x4), x5)) |
We simplified constraint (1) using rules (I), (II), (IV), (VII) which results in the following new constraint:
(2) (s(x4)=x18∧le(x3, x18)=false ⇒ LOOP(x3, s(x4), x5)≥IF(le(x3, s(x4)), x3, s(x4), x5)) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on le(x3, x18)=false which results in the following new constraints:
(3) (le(x21, x20)=false∧s(x4)=s(x20)∧(∀x22,x23:le(x21, x20)=false∧s(x22)=x20 ⇒ LOOP(x21, s(x22), x23)≥IF(le(x21, s(x22)), x21, s(x22), x23)) ⇒ LOOP(s(x21), s(x4), x5)≥IF(le(s(x21), s(x4)), s(x21), s(x4), x5)) |
(4) (false=false∧s(x4)=0 ⇒ LOOP(s(x24), s(x4), x5)≥IF(le(s(x24), s(x4)), s(x24), s(x4), x5)) |
We simplified constraint (3) using rules (I), (II), (III), (IV) which results in the following new constraint:
(5) (le(x21, x20)=false ⇒ LOOP(s(x21), s(x20), x5)≥IF(le(s(x21), s(x20)), s(x21), s(x20), x5)) |
We solved constraint (4) using rules (I), (II).We simplified constraint (5) using rule (V) (with possible (I) afterwards) using induction on le(x21, x20)=false which results in the following new constraints:
(6) (le(x27, x26)=false∧(∀x28:le(x27, x26)=false ⇒ LOOP(s(x27), s(x26), x28)≥IF(le(s(x27), s(x26)), s(x27), s(x26), x28)) ⇒ LOOP(s(s(x27)), s(s(x26)), x5)≥IF(le(s(s(x27)), s(s(x26))), s(s(x27)), s(s(x26)), x5)) |
(7) (false=false ⇒ LOOP(s(s(x29)), s(0), x5)≥IF(le(s(s(x29)), s(0)), s(s(x29)), s(0), x5)) |
We simplified constraint (6) using rule (VI) where we applied the induction hypothesis (∀x28:le(x27, x26)=false ⇒ LOOP(s(x27), s(x26), x28)≥IF(le(s(x27), s(x26)), s(x27), s(x26), x28)) with σ = [x28 / x5] which results in the following new constraint:
(8) (LOOP(s(x27), s(x26), x5)≥IF(le(s(x27), s(x26)), s(x27), s(x26), x5) ⇒ LOOP(s(s(x27)), s(s(x26)), x5)≥IF(le(s(s(x27)), s(s(x26))), s(s(x27)), s(s(x26)), x5)) |
We simplified constraint (7) using rules (I), (II) which results in the following new constraint:
(9) (LOOP(s(s(x29)), s(0), x5)≥IF(le(s(s(x29)), s(0)), s(s(x29)), s(0), x5)) |
For Pair
IF(
false,
x,
y,
z) →
LOOP(
x,
double(
y),
s(
z)) the following chains were created:
- We consider the chain IF(false, x9, x10, x11) → LOOP(x9, double(x10), s(x11)), LOOP(x12, s(x13), x14) → IF(le(x12, s(x13)), x12, s(x13), x14) which results in the following constraint:
(1) (LOOP(x9, double(x10), s(x11))=LOOP(x12, s(x13), x14) ⇒ IF(false, x9, x10, x11)≥LOOP(x9, double(x10), s(x11))) |
We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint:
(2) (double(x10)=s(x13) ⇒ IF(false, x9, x10, x11)≥LOOP(x9, double(x10), s(x11))) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on double(x10)=s(x13) which results in the following new constraint:
(3) (s(s(double(x30)))=s(x13)∧(∀x31,x32,x33:double(x30)=s(x31) ⇒ IF(false, x32, x30, x33)≥LOOP(x32, double(x30), s(x33))) ⇒ IF(false, x9, s(x30), x11)≥LOOP(x9, double(s(x30)), s(x11))) |
We simplified constraint (3) using rules (I), (II), (IV) which results in the following new constraint:
(4) (IF(false, x9, s(x30), x11)≥LOOP(x9, double(s(x30)), s(x11))) |
To summarize, we get the following constraints P
≥ for the following pairs.
- LOOP(x, s(y), z) → IF(le(x, s(y)), x, s(y), z)
- (LOOP(s(x27), s(x26), x5)≥IF(le(s(x27), s(x26)), s(x27), s(x26), x5) ⇒ LOOP(s(s(x27)), s(s(x26)), x5)≥IF(le(s(s(x27)), s(s(x26))), s(s(x27)), s(s(x26)), x5))
- (LOOP(s(s(x29)), s(0), x5)≥IF(le(s(s(x29)), s(0)), s(s(x29)), s(0), x5))
- IF(false, x, y, z) → LOOP(x, double(y), s(z))
- (IF(false, x9, s(x30), x11)≥LOOP(x9, double(s(x30)), s(x11)))
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:
POL(0) = 0
POL(IF(x1, x2, x3, x4)) = -1 - x1 + x2 - x3
POL(LOOP(x1, x2, x3)) = -1 + x1 - x2
POL(c) = -2
POL(double(x1)) = 2·x1
POL(false) = 0
POL(le(x1, x2)) = 0
POL(s(x1)) = 1 + x1
POL(true) = 0
The following pairs are in P
>:
IF(false, x, y, z) → LOOP(x, double(y), s(z))
The following pairs are in P
bound:
LOOP(x, s(y), z) → IF(le(x, s(y)), x, s(y), z)
The following rules are usable:
true → le(0, y)
le(x, y) → le(s(x), s(y))
0 → double(0)
s(s(double(x))) → double(s(x))
false → le(s(x), 0)
(41) Complex Obligation (AND)
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LOOP(x, s(y), z) → IF(le(x, s(y)), x, s(y), z)
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
le(0, y) → true
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
We have to consider all minimal (P,Q,R)-chains.
(43) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(44) TRUE
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, x, y, z) → LOOP(x, double(y), s(z))
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
le(0, y) → true
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
We have to consider all minimal (P,Q,R)-chains.
(46) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(47) TRUE
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFMAP(false, xs, ys) → MAPITER(droplast(xs), cons(log(last(xs)), ys))
MAPITER(xs, ys) → IFMAP(isempty(xs), xs, ys)
The TRS R consists of the following rules:
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
if(true, x, y, z) → z
if(false, x, y, z) → loop(x, double(y), s(z))
maplog(xs) → mapIter(xs, nil)
mapIter(xs, ys) → ifmap(isempty(xs), xs, ys)
ifmap(true, xs, ys) → ys
ifmap(false, xs, ys) → mapIter(droplast(xs), cons(log(last(xs)), ys))
isempty(nil) → true
isempty(cons(x, xs)) → false
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
a → b
a → c
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(49) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFMAP(false, xs, ys) → MAPITER(droplast(xs), cons(log(last(xs)), ys))
MAPITER(xs, ys) → IFMAP(isempty(xs), xs, ys)
The TRS R consists of the following rules:
isempty(nil) → true
isempty(cons(x, xs)) → false
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
if(false, x, y, z) → loop(x, double(y), s(z))
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
double(0) → 0
double(s(x)) → s(s(double(x)))
le(0, y) → true
le(s(x), s(y)) → le(x, y)
if(true, x, y, z) → z
le(s(x), 0) → false
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
a
We have to consider all minimal (P,Q,R)-chains.
(51) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
maplog(x0)
mapIter(x0, x1)
ifmap(true, x0, x1)
ifmap(false, x0, x1)
a
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFMAP(false, xs, ys) → MAPITER(droplast(xs), cons(log(last(xs)), ys))
MAPITER(xs, ys) → IFMAP(isempty(xs), xs, ys)
The TRS R consists of the following rules:
isempty(nil) → true
isempty(cons(x, xs)) → false
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
if(false, x, y, z) → loop(x, double(y), s(z))
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
double(0) → 0
double(s(x)) → s(s(double(x)))
le(0, y) → true
le(s(x), s(y)) → le(x, y)
if(true, x, y, z) → z
le(s(x), 0) → false
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(53) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
MAPITER(
xs,
ys) →
IFMAP(
isempty(
xs),
xs,
ys) at position [0] we obtained the following new rules [LPAR04]:
MAPITER(nil, y1) → IFMAP(true, nil, y1) → MAPITER(nil, y1) → IFMAP(true, nil, y1)
MAPITER(cons(x0, x1), y1) → IFMAP(false, cons(x0, x1), y1) → MAPITER(cons(x0, x1), y1) → IFMAP(false, cons(x0, x1), y1)
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFMAP(false, xs, ys) → MAPITER(droplast(xs), cons(log(last(xs)), ys))
MAPITER(nil, y1) → IFMAP(true, nil, y1)
MAPITER(cons(x0, x1), y1) → IFMAP(false, cons(x0, x1), y1)
The TRS R consists of the following rules:
isempty(nil) → true
isempty(cons(x, xs)) → false
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
if(false, x, y, z) → loop(x, double(y), s(z))
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
double(0) → 0
double(s(x)) → s(s(double(x)))
le(0, y) → true
le(s(x), s(y)) → le(x, y)
if(true, x, y, z) → z
le(s(x), 0) → false
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(55) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAPITER(cons(x0, x1), y1) → IFMAP(false, cons(x0, x1), y1)
IFMAP(false, xs, ys) → MAPITER(droplast(xs), cons(log(last(xs)), ys))
The TRS R consists of the following rules:
isempty(nil) → true
isempty(cons(x, xs)) → false
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
if(false, x, y, z) → loop(x, double(y), s(z))
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
double(0) → 0
double(s(x)) → s(s(double(x)))
le(0, y) → true
le(s(x), s(y)) → le(x, y)
if(true, x, y, z) → z
le(s(x), 0) → false
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(57) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(58) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAPITER(cons(x0, x1), y1) → IFMAP(false, cons(x0, x1), y1)
IFMAP(false, xs, ys) → MAPITER(droplast(xs), cons(log(last(xs)), ys))
The TRS R consists of the following rules:
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
if(false, x, y, z) → loop(x, double(y), s(z))
le(0, y) → true
le(s(x), s(y)) → le(x, y)
if(true, x, y, z) → z
double(0) → 0
double(s(x)) → s(s(double(x)))
le(s(x), 0) → false
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
isempty(nil)
isempty(cons(x0, x1))
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(59) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
isempty(nil)
isempty(cons(x0, x1))
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAPITER(cons(x0, x1), y1) → IFMAP(false, cons(x0, x1), y1)
IFMAP(false, xs, ys) → MAPITER(droplast(xs), cons(log(last(xs)), ys))
The TRS R consists of the following rules:
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
if(false, x, y, z) → loop(x, double(y), s(z))
le(0, y) → true
le(s(x), s(y)) → le(x, y)
if(true, x, y, z) → z
double(0) → 0
double(s(x)) → s(s(double(x)))
le(s(x), 0) → false
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(61) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IFMAP(false, xs, ys) → MAPITER(droplast(xs), cons(log(last(xs)), ys))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) :
POL(MAPITER(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(cons(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(IFMAP(x1, x2, x3)) = | 1 | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(droplast(x1)) = | | + | | · | x1 |
POL(loop(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(if(x1, x2, x3, x4)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(le(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAPITER(cons(x0, x1), y1) → IFMAP(false, cons(x0, x1), y1)
The TRS R consists of the following rules:
droplast(nil) → nil
droplast(cons(x, nil)) → nil
droplast(cons(x, cons(y, xs))) → cons(x, droplast(cons(y, xs)))
last(nil) → error
last(cons(x, nil)) → x
last(cons(x, cons(y, xs))) → last(cons(y, xs))
log(0) → logError
log(s(x)) → loop(s(x), s(0), 0)
loop(x, s(y), z) → if(le(x, s(y)), x, s(y), z)
if(false, x, y, z) → loop(x, double(y), s(z))
le(0, y) → true
le(s(x), s(y)) → le(x, y)
if(true, x, y, z) → z
double(0) → 0
double(s(x)) → s(s(double(x)))
le(s(x), 0) → false
The set Q consists of the following terms:
le(s(x0), 0)
le(0, x0)
le(s(x0), s(x1))
double(0)
double(s(x0))
log(0)
log(s(x0))
loop(x0, s(x1), x2)
if(true, x0, x1, x2)
if(false, x0, x1, x2)
last(nil)
last(cons(x0, nil))
last(cons(x0, cons(x1, x2)))
droplast(nil)
droplast(cons(x0, nil))
droplast(cons(x0, cons(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
(63) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(64) TRUE