(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
prod(xs) → prodIter(xs, s(0))
prodIter(xs, x) → ifProd(isempty(xs), xs, x)
ifProd(true, xs, x) → x
ifProd(false, xs, x) → prodIter(tail(xs), times(x, head(xs)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(x, y) → timesIter(x, y, 0, 0)
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
a → b
a → c
Q is empty.
(1) AAECC Innermost (EQUIVALENT transformation)
We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is
ifProd(true, xs, x) → x
ifProd(false, xs, x) → prodIter(tail(xs), times(x, head(xs)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(x, y) → timesIter(x, y, 0, 0)
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
prod(xs) → prodIter(xs, s(0))
prodIter(xs, x) → ifProd(isempty(xs), xs, x)
The TRS R 2 is
a → b
a → c
The signature Sigma is {
a,
b,
c}
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
prod(xs) → prodIter(xs, s(0))
prodIter(xs, x) → ifProd(isempty(xs), xs, x)
ifProd(true, xs, x) → x
ifProd(false, xs, x) → prodIter(tail(xs), times(x, head(xs)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(x, y) → timesIter(x, y, 0, 0)
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
a → b
a → c
The set Q consists of the following terms:
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
a
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PROD(xs) → PRODITER(xs, s(0))
PRODITER(xs, x) → IFPROD(isempty(xs), xs, x)
PRODITER(xs, x) → ISEMPTY(xs)
IFPROD(false, xs, x) → PRODITER(tail(xs), times(x, head(xs)))
IFPROD(false, xs, x) → TAIL(xs)
IFPROD(false, xs, x) → TIMES(x, head(xs))
IFPROD(false, xs, x) → HEAD(xs)
PLUS(s(x), y) → PLUS(x, y)
TIMES(x, y) → TIMESITER(x, y, 0, 0)
TIMESITER(x, y, z, u) → IFTIMES(ge(u, x), x, y, z, u)
TIMESITER(x, y, z, u) → GE(u, x)
IFTIMES(false, x, y, z, u) → TIMESITER(x, y, plus(y, z), s(u))
IFTIMES(false, x, y, z, u) → PLUS(y, z)
GE(s(x), s(y)) → GE(x, y)
The TRS R consists of the following rules:
prod(xs) → prodIter(xs, s(0))
prodIter(xs, x) → ifProd(isempty(xs), xs, x)
ifProd(true, xs, x) → x
ifProd(false, xs, x) → prodIter(tail(xs), times(x, head(xs)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(x, y) → timesIter(x, y, 0, 0)
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
a → b
a → c
The set Q consists of the following terms:
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
a
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 8 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
The TRS R consists of the following rules:
prod(xs) → prodIter(xs, s(0))
prodIter(xs, x) → ifProd(isempty(xs), xs, x)
ifProd(true, xs, x) → x
ifProd(false, xs, x) → prodIter(tail(xs), times(x, head(xs)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(x, y) → timesIter(x, y, 0, 0)
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
a → b
a → c
The set Q consists of the following terms:
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
a
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
R is empty.
The set Q consists of the following terms:
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
a
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
a
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GE(s(x), s(y)) → GE(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
The TRS R consists of the following rules:
prod(xs) → prodIter(xs, s(0))
prodIter(xs, x) → ifProd(isempty(xs), xs, x)
ifProd(true, xs, x) → x
ifProd(false, xs, x) → prodIter(tail(xs), times(x, head(xs)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(x, y) → timesIter(x, y, 0, 0)
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
a → b
a → c
The set Q consists of the following terms:
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
a
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
R is empty.
The set Q consists of the following terms:
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
a
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
a
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), y) → PLUS(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- PLUS(s(x), y) → PLUS(x, y)
The graph contains the following edges 1 > 1, 2 >= 2
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFTIMES(false, x, y, z, u) → TIMESITER(x, y, plus(y, z), s(u))
TIMESITER(x, y, z, u) → IFTIMES(ge(u, x), x, y, z, u)
The TRS R consists of the following rules:
prod(xs) → prodIter(xs, s(0))
prodIter(xs, x) → ifProd(isempty(xs), xs, x)
ifProd(true, xs, x) → x
ifProd(false, xs, x) → prodIter(tail(xs), times(x, head(xs)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(x, y) → timesIter(x, y, 0, 0)
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
a → b
a → c
The set Q consists of the following terms:
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
a
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFTIMES(false, x, y, z, u) → TIMESITER(x, y, plus(y, z), s(u))
TIMESITER(x, y, z, u) → IFTIMES(ge(u, x), x, y, z, u)
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
The set Q consists of the following terms:
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
a
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
a
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFTIMES(false, x, y, z, u) → TIMESITER(x, y, plus(y, z), s(u))
TIMESITER(x, y, z, u) → IFTIMES(ge(u, x), x, y, z, u)
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(26) NonInfProof (EQUIVALENT transformation)
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
IFTIMES(
false,
x,
y,
z,
u) →
TIMESITER(
x,
y,
plus(
y,
z),
s(
u)) the following chains were created:
- We consider the chain TIMESITER(x4, x5, x6, x7) → IFTIMES(ge(x7, x4), x4, x5, x6, x7), IFTIMES(false, x8, x9, x10, x11) → TIMESITER(x8, x9, plus(x9, x10), s(x11)) which results in the following constraint:
(1) (IFTIMES(ge(x7, x4), x4, x5, x6, x7)=IFTIMES(false, x8, x9, x10, x11) ⇒ IFTIMES(false, x8, x9, x10, x11)≥TIMESITER(x8, x9, plus(x9, x10), s(x11))) |
We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint:
(2) (ge(x7, x4)=false ⇒ IFTIMES(false, x4, x5, x6, x7)≥TIMESITER(x4, x5, plus(x5, x6), s(x7))) |
We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on ge(x7, x4)=false which results in the following new constraints:
(3) (false=false ⇒ IFTIMES(false, s(x25), x5, x6, 0)≥TIMESITER(s(x25), x5, plus(x5, x6), s(0))) |
(4) (ge(x27, x26)=false∧(∀x28,x29:ge(x27, x26)=false ⇒ IFTIMES(false, x26, x28, x29, x27)≥TIMESITER(x26, x28, plus(x28, x29), s(x27))) ⇒ IFTIMES(false, s(x26), x5, x6, s(x27))≥TIMESITER(s(x26), x5, plus(x5, x6), s(s(x27)))) |
We simplified constraint (3) using rules (I), (II) which results in the following new constraint:
(5) (IFTIMES(false, s(x25), x5, x6, 0)≥TIMESITER(s(x25), x5, plus(x5, x6), s(0))) |
We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (∀x28,x29:ge(x27, x26)=false ⇒ IFTIMES(false, x26, x28, x29, x27)≥TIMESITER(x26, x28, plus(x28, x29), s(x27))) with σ = [x28 / x5, x29 / x6] which results in the following new constraint:
(6) (IFTIMES(false, x26, x5, x6, x27)≥TIMESITER(x26, x5, plus(x5, x6), s(x27)) ⇒ IFTIMES(false, s(x26), x5, x6, s(x27))≥TIMESITER(s(x26), x5, plus(x5, x6), s(s(x27)))) |
For Pair
TIMESITER(
x,
y,
z,
u) →
IFTIMES(
ge(
u,
x),
x,
y,
z,
u) the following chains were created:
- We consider the chain IFTIMES(false, x12, x13, x14, x15) → TIMESITER(x12, x13, plus(x13, x14), s(x15)), TIMESITER(x16, x17, x18, x19) → IFTIMES(ge(x19, x16), x16, x17, x18, x19) which results in the following constraint:
(1) (TIMESITER(x12, x13, plus(x13, x14), s(x15))=TIMESITER(x16, x17, x18, x19) ⇒ TIMESITER(x16, x17, x18, x19)≥IFTIMES(ge(x19, x16), x16, x17, x18, x19)) |
We simplified constraint (1) using rules (I), (II), (III), (IV) which results in the following new constraint:
(2) (TIMESITER(x12, x13, x18, s(x15))≥IFTIMES(ge(s(x15), x12), x12, x13, x18, s(x15))) |
To summarize, we get the following constraints P
≥ for the following pairs.
- IFTIMES(false, x, y, z, u) → TIMESITER(x, y, plus(y, z), s(u))
- (IFTIMES(false, s(x25), x5, x6, 0)≥TIMESITER(s(x25), x5, plus(x5, x6), s(0)))
- (IFTIMES(false, x26, x5, x6, x27)≥TIMESITER(x26, x5, plus(x5, x6), s(x27)) ⇒ IFTIMES(false, s(x26), x5, x6, s(x27))≥TIMESITER(s(x26), x5, plus(x5, x6), s(s(x27))))
- TIMESITER(x, y, z, u) → IFTIMES(ge(u, x), x, y, z, u)
- (TIMESITER(x12, x13, x18, s(x15))≥IFTIMES(ge(s(x15), x12), x12, x13, x18, s(x15)))
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:
POL(0) = 0
POL(IFTIMES(x1, x2, x3, x4, x5)) = 1 + x2 + x3 - x5
POL(TIMESITER(x1, x2, x3, x4)) = 1 + x1 + x2 - x4
POL(c) = -1
POL(false) = 0
POL(ge(x1, x2)) = 1 + x1 + x2
POL(plus(x1, x2)) = x1
POL(s(x1)) = 1 + x1
POL(true) = 1
The following pairs are in P
>:
IFTIMES(false, x, y, z, u) → TIMESITER(x, y, plus(y, z), s(u))
The following pairs are in P
bound:
IFTIMES(false, x, y, z, u) → TIMESITER(x, y, plus(y, z), s(u))
There are no usable rules
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TIMESITER(x, y, z, u) → IFTIMES(ge(u, x), x, y, z, u)
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(29) TRUE
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFPROD(false, xs, x) → PRODITER(tail(xs), times(x, head(xs)))
PRODITER(xs, x) → IFPROD(isempty(xs), xs, x)
The TRS R consists of the following rules:
prod(xs) → prodIter(xs, s(0))
prodIter(xs, x) → ifProd(isempty(xs), xs, x)
ifProd(true, xs, x) → x
ifProd(false, xs, x) → prodIter(tail(xs), times(x, head(xs)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(x, y) → timesIter(x, y, 0, 0)
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
isempty(nil) → true
isempty(cons(x, xs)) → false
head(nil) → error
head(cons(x, xs)) → x
tail(nil) → nil
tail(cons(x, xs)) → xs
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
a → b
a → c
The set Q consists of the following terms:
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
a
We have to consider all minimal (P,Q,R)-chains.
(31) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFPROD(false, xs, x) → PRODITER(tail(xs), times(x, head(xs)))
PRODITER(xs, x) → IFPROD(isempty(xs), xs, x)
The TRS R consists of the following rules:
isempty(nil) → true
isempty(cons(x, xs)) → false
tail(nil) → nil
tail(cons(x, xs)) → xs
head(nil) → error
head(cons(x, xs)) → x
times(x, y) → timesIter(x, y, 0, 0)
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ifTimes(true, x, y, z, u) → z
The set Q consists of the following terms:
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
a
We have to consider all minimal (P,Q,R)-chains.
(33) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
prod(x0)
prodIter(x0, x1)
ifProd(true, x0, x1)
ifProd(false, x0, x1)
a
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFPROD(false, xs, x) → PRODITER(tail(xs), times(x, head(xs)))
PRODITER(xs, x) → IFPROD(isempty(xs), xs, x)
The TRS R consists of the following rules:
isempty(nil) → true
isempty(cons(x, xs)) → false
tail(nil) → nil
tail(cons(x, xs)) → xs
head(nil) → error
head(cons(x, xs)) → x
times(x, y) → timesIter(x, y, 0, 0)
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ifTimes(true, x, y, z, u) → z
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(35) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
PRODITER(xs, x) → IFPROD(isempty(xs), xs, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO,RATPOLO]:
POL(0) = 0
POL(IFPROD(x1, x2, x3)) = [1/4]x1 + [1/2]x2
POL(PRODITER(x1, x2)) = [1/2] + [2]x1
POL(cons(x1, x2)) = [4] + [4]x2
POL(error) = 0
POL(false) = [2]
POL(ge(x1, x2)) = [2]
POL(head(x1)) = 0
POL(ifTimes(x1, x2, x3, x4, x5)) = [2] + x1 + [4]x2 + [4]x3 + x4
POL(isempty(x1)) = [1/4] + [1/2]x1
POL(nil) = 0
POL(plus(x1, x2)) = [1/2]x2
POL(s(x1)) = x1
POL(tail(x1)) = [1/4]x1
POL(times(x1, x2)) = [4] + [4]x1 + [4]x2
POL(timesIter(x1, x2, x3, x4)) = [4] + [4]x1 + [4]x2 + [2]x3
POL(true) = 0
The value of delta used in the strict ordering is 7/16.
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
tail(nil) → nil
tail(cons(x, xs)) → xs
isempty(nil) → true
isempty(cons(x, xs)) → false
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFPROD(false, xs, x) → PRODITER(tail(xs), times(x, head(xs)))
The TRS R consists of the following rules:
isempty(nil) → true
isempty(cons(x, xs)) → false
tail(nil) → nil
tail(cons(x, xs)) → xs
head(nil) → error
head(cons(x, xs)) → x
times(x, y) → timesIter(x, y, 0, 0)
ifTimes(false, x, y, z, u) → timesIter(x, y, plus(y, z), s(u))
timesIter(x, y, z, u) → ifTimes(ge(u, x), x, y, z, u)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ifTimes(true, x, y, z, u) → z
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
times(x0, x1)
timesIter(x0, x1, x2, x3)
ifTimes(true, x0, x1, x2, x3)
ifTimes(false, x0, x1, x2, x3)
isempty(nil)
isempty(cons(x0, x1))
head(nil)
head(cons(x0, x1))
tail(nil)
tail(cons(x0, x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(37) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(38) TRUE