(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
sumList(xs, y) → if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
if(true, b, y, xs, ys, x) → y
if(false, true, y, xs, ys, x) → sumList(xs, y)
if(false, false, y, xs, ys, x) → sumList(ys, x)
sum(xs) → sumList(xs, 0)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
sumList(xs, y) → if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
if(true, b, y, xs, ys, x) → y
if(false, true, y, xs, ys, x) → sumList(xs, y)
if(false, false, y, xs, ys, x) → sumList(ys, x)
sum(xs) → sumList(xs, 0)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
sumList(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, true, x0, x1, x2, x3)
if(false, false, x0, x1, x2, x3)
sum(x0)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(s(s(x))) → P(s(x))
INC(s(x)) → INC(x)
SUMLIST(xs, y) → IF(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
SUMLIST(xs, y) → ISEMPTY(xs)
SUMLIST(xs, y) → ISZERO(head(xs))
SUMLIST(xs, y) → HEAD(xs)
SUMLIST(xs, y) → TAIL(xs)
SUMLIST(xs, y) → P(head(xs))
SUMLIST(xs, y) → INC(y)
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUM(xs) → SUMLIST(xs, 0)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
sumList(xs, y) → if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
if(true, b, y, xs, ys, x) → y
if(false, true, y, xs, ys, x) → sumList(xs, y)
if(false, false, y, xs, ys, x) → sumList(ys, x)
sum(xs) → sumList(xs, 0)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
sumList(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, true, x0, x1, x2, x3)
if(false, false, x0, x1, x2, x3)
sum(x0)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 7 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INC(s(x)) → INC(x)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
sumList(xs, y) → if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
if(true, b, y, xs, ys, x) → y
if(false, true, y, xs, ys, x) → sumList(xs, y)
if(false, false, y, xs, ys, x) → sumList(ys, x)
sum(xs) → sumList(xs, 0)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
sumList(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, true, x0, x1, x2, x3)
if(false, false, x0, x1, x2, x3)
sum(x0)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INC(s(x)) → INC(x)
R is empty.
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
sumList(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, true, x0, x1, x2, x3)
if(false, false, x0, x1, x2, x3)
sum(x0)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
sumList(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, true, x0, x1, x2, x3)
if(false, false, x0, x1, x2, x3)
sum(x0)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INC(s(x)) → INC(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- INC(s(x)) → INC(x)
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(s(s(x))) → P(s(x))
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
sumList(xs, y) → if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
if(true, b, y, xs, ys, x) → y
if(false, true, y, xs, ys, x) → sumList(xs, y)
if(false, false, y, xs, ys, x) → sumList(ys, x)
sum(xs) → sumList(xs, 0)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
sumList(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, true, x0, x1, x2, x3)
if(false, false, x0, x1, x2, x3)
sum(x0)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(s(s(x))) → P(s(x))
R is empty.
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
sumList(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, true, x0, x1, x2, x3)
if(false, false, x0, x1, x2, x3)
sum(x0)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
sumList(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, true, x0, x1, x2, x3)
if(false, false, x0, x1, x2, x3)
sum(x0)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(s(s(x))) → P(s(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P(s(s(x))) → P(s(x))
The graph contains the following edges 1 > 1
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMLIST(xs, y) → IF(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
sumList(xs, y) → if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
if(true, b, y, xs, ys, x) → y
if(false, true, y, xs, ys, x) → sumList(xs, y)
if(false, false, y, xs, ys, x) → sumList(ys, x)
sum(xs) → sumList(xs, 0)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
sumList(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, true, x0, x1, x2, x3)
if(false, false, x0, x1, x2, x3)
sum(x0)
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMLIST(xs, y) → IF(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
sumList(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, true, x0, x1, x2, x3)
if(false, false, x0, x1, x2, x3)
sum(x0)
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
sumList(x0, x1)
if(true, x0, x1, x2, x3, x4)
if(false, true, x0, x1, x2, x3)
if(false, false, x0, x1, x2, x3)
sum(x0)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMLIST(xs, y) → IF(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y))
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(26) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
SUMLIST(
xs,
y) →
IF(
isEmpty(
xs),
isZero(
head(
xs)),
y,
tail(
xs),
cons(
p(
head(
xs)),
tail(
xs)),
inc(
y)) at position [0] we obtained the following new rules [LPAR04]:
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(head(cons(x0, x1))), y1, tail(cons(x0, x1)), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), inc(y1)) → SUMLIST(cons(x0, x1), y1) → IF(false, isZero(head(cons(x0, x1))), y1, tail(cons(x0, x1)), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), inc(y1))
SUMLIST(nil, y1) → IF(true, isZero(head(nil)), y1, tail(nil), cons(p(head(nil)), tail(nil)), inc(y1)) → SUMLIST(nil, y1) → IF(true, isZero(head(nil)), y1, tail(nil), cons(p(head(nil)), tail(nil)), inc(y1))
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(head(cons(x0, x1))), y1, tail(cons(x0, x1)), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), inc(y1))
SUMLIST(nil, y1) → IF(true, isZero(head(nil)), y1, tail(nil), cons(p(head(nil)), tail(nil)), inc(y1))
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(head(cons(x0, x1))), y1, tail(cons(x0, x1)), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), inc(y1))
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(30) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(head(cons(x0, x1))), y1, tail(cons(x0, x1)), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), inc(y1))
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
The TRS R consists of the following rules:
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(32) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
isEmpty(cons(x0, x1))
isEmpty(nil)
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(head(cons(x0, x1))), y1, tail(cons(x0, x1)), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), inc(y1))
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
The TRS R consists of the following rules:
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(34) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
SUMLIST(
cons(
x0,
x1),
y1) →
IF(
false,
isZero(
head(
cons(
x0,
x1))),
y1,
tail(
cons(
x0,
x1)),
cons(
p(
head(
cons(
x0,
x1))),
tail(
cons(
x0,
x1))),
inc(
y1)) at position [1,0] we obtained the following new rules [LPAR04]:
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, tail(cons(x0, x1)), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), inc(y1)) → SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, tail(cons(x0, x1)), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), inc(y1))
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, tail(cons(x0, x1)), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), inc(y1))
The TRS R consists of the following rules:
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(36) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
SUMLIST(
cons(
x0,
x1),
y1) →
IF(
false,
isZero(
x0),
y1,
tail(
cons(
x0,
x1)),
cons(
p(
head(
cons(
x0,
x1))),
tail(
cons(
x0,
x1))),
inc(
y1)) at position [3] we obtained the following new rules [LPAR04]:
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), inc(y1)) → SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), inc(y1))
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), inc(y1))
The TRS R consists of the following rules:
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(38) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
SUMLIST(
cons(
x0,
x1),
y1) →
IF(
false,
isZero(
x0),
y1,
x1,
cons(
p(
head(
cons(
x0,
x1))),
tail(
cons(
x0,
x1))),
inc(
y1)) at position [4,0,0] we obtained the following new rules [LPAR04]:
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(x0), tail(cons(x0, x1))), inc(y1)) → SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(x0), tail(cons(x0, x1))), inc(y1))
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(x0), tail(cons(x0, x1))), inc(y1))
The TRS R consists of the following rules:
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(40) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(x0), tail(cons(x0, x1))), inc(y1))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
tail(cons(x, xs)) → xs
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(42) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
head(cons(x0, x1))
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(x0), tail(cons(x0, x1))), inc(y1))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
tail(cons(x, xs)) → xs
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(44) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
SUMLIST(
cons(
x0,
x1),
y1) →
IF(
false,
isZero(
x0),
y1,
x1,
cons(
p(
x0),
tail(
cons(
x0,
x1))),
inc(
y1)) at position [4,1] we obtained the following new rules [LPAR04]:
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(x0), x1), inc(y1)) → SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(x0), x1), inc(y1))
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(x0), x1), inc(y1))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
tail(cons(x, xs)) → xs
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(46) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(x0), x1), inc(y1))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
tail(cons(x0, x1))
tail(nil)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(48) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail(cons(x0, x1))
tail(nil)
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(x0, x1), y1) → IF(false, isZero(x0), y1, x1, cons(p(x0), x1), inc(y1))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(50) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
SUMLIST(
cons(
x0,
x1),
y1) →
IF(
false,
isZero(
x0),
y1,
x1,
cons(
p(
x0),
x1),
inc(
y1)) at position [1] we obtained the following new rules [LPAR04]:
SUMLIST(cons(0, y1), y2) → IF(false, true, y2, y1, cons(p(0), y1), inc(y2)) → SUMLIST(cons(0, y1), y2) → IF(false, true, y2, y1, cons(p(0), y1), inc(y2))
SUMLIST(cons(s(x0), y1), y2) → IF(false, false, y2, y1, cons(p(s(x0)), y1), inc(y2)) → SUMLIST(cons(s(x0), y1), y2) → IF(false, false, y2, y1, cons(p(s(x0)), y1), inc(y2))
(51) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(0, y1), y2) → IF(false, true, y2, y1, cons(p(0), y1), inc(y2))
SUMLIST(cons(s(x0), y1), y2) → IF(false, false, y2, y1, cons(p(s(x0)), y1), inc(y2))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(52) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(53) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(0, y1), y2) → IF(false, true, y2, y1, cons(p(0), y1), inc(y2))
SUMLIST(cons(s(x0), y1), y2) → IF(false, false, y2, y1, cons(p(s(x0)), y1), inc(y2))
The TRS R consists of the following rules:
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
p(0) → 0
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(54) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
isZero(0)
isZero(s(x0))
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(0, y1), y2) → IF(false, true, y2, y1, cons(p(0), y1), inc(y2))
SUMLIST(cons(s(x0), y1), y2) → IF(false, false, y2, y1, cons(p(s(x0)), y1), inc(y2))
The TRS R consists of the following rules:
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
p(0) → 0
The set Q consists of the following terms:
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(56) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
SUMLIST(
cons(
0,
y1),
y2) →
IF(
false,
true,
y2,
y1,
cons(
p(
0),
y1),
inc(
y2)) at position [4,0] we obtained the following new rules [LPAR04]:
SUMLIST(cons(0, y1), y2) → IF(false, true, y2, y1, cons(0, y1), inc(y2)) → SUMLIST(cons(0, y1), y2) → IF(false, true, y2, y1, cons(0, y1), inc(y2))
(57) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(s(x0), y1), y2) → IF(false, false, y2, y1, cons(p(s(x0)), y1), inc(y2))
SUMLIST(cons(0, y1), y2) → IF(false, true, y2, y1, cons(0, y1), inc(y2))
The TRS R consists of the following rules:
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
p(0) → 0
The set Q consists of the following terms:
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(58) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(59) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, true, y, xs, ys, x) → SUMLIST(xs, y)
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(s(x0), y1), y2) → IF(false, false, y2, y1, cons(p(s(x0)), y1), inc(y2))
SUMLIST(cons(0, y1), y2) → IF(false, true, y2, y1, cons(0, y1), inc(y2))
The TRS R consists of the following rules:
inc(s(x)) → s(inc(x))
inc(0) → s(0)
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
The set Q consists of the following terms:
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(60) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF(
false,
true,
y,
xs,
ys,
x) →
SUMLIST(
xs,
y) we obtained the following new rules [LPAR04]:
IF(false, true, z1, z0, cons(0, z0), y_0) → SUMLIST(z0, z1) → IF(false, true, z1, z0, cons(0, z0), y_0) → SUMLIST(z0, z1)
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(s(x0), y1), y2) → IF(false, false, y2, y1, cons(p(s(x0)), y1), inc(y2))
SUMLIST(cons(0, y1), y2) → IF(false, true, y2, y1, cons(0, y1), inc(y2))
IF(false, true, z1, z0, cons(0, z0), y_0) → SUMLIST(z0, z1)
The TRS R consists of the following rules:
inc(s(x)) → s(inc(x))
inc(0) → s(0)
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
The set Q consists of the following terms:
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(62) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF(false, true, z1, z0, cons(0, z0), y_0) → SUMLIST(z0, z1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF(
x1,
x2,
x3,
x4,
x5,
x6) =
x5
SUMLIST(
x1,
x2) =
x1
cons(
x1,
x2) =
cons(
x2)
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
dummyConstant=1
cons_1=1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
SUMLIST(cons(s(x0), y1), y2) → IF(false, false, y2, y1, cons(p(s(x0)), y1), inc(y2))
SUMLIST(cons(0, y1), y2) → IF(false, true, y2, y1, cons(0, y1), inc(y2))
The TRS R consists of the following rules:
inc(s(x)) → s(inc(x))
inc(0) → s(0)
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
The set Q consists of the following terms:
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(64) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMLIST(cons(s(x0), y1), y2) → IF(false, false, y2, y1, cons(p(s(x0)), y1), inc(y2))
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
The TRS R consists of the following rules:
inc(s(x)) → s(inc(x))
inc(0) → s(0)
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
The set Q consists of the following terms:
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(66) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF(false, false, y, xs, ys, x) → SUMLIST(ys, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( IF(x1, ..., x6) ) = max{0, 2x1 + 2x2 + 2x5 + 2x6 - 2} |
POL( cons(x1, x2) ) = 2x1 + 1 |
POL( p(x1) ) = max{0, x1 - 2} |
POL( SUMLIST(x1, x2) ) = 2x1 + 2x2 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUMLIST(cons(s(x0), y1), y2) → IF(false, false, y2, y1, cons(p(s(x0)), y1), inc(y2))
The TRS R consists of the following rules:
inc(s(x)) → s(inc(x))
inc(0) → s(0)
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
The set Q consists of the following terms:
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(68) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(69) TRUE