(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
addLists(xs, ys, zs) → if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys)))
if(true, true, b, xs, ys, xs2, ys2, zs, zs2) → zs
if(true, false, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, true, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, false, false, xs, ys, xs2, ys2, zs, zs2) → addLists(xs2, ys2, zs)
if(false, false, true, xs, ys, xs2, ys2, zs, zs2) → addLists(xs, ys, zs2)
addList(xs, ys) → addLists(xs, ys, nil)
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
addLists(xs, ys, zs) → if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys)))
if(true, true, b, xs, ys, xs2, ys2, zs, zs2) → zs
if(true, false, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, true, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, false, false, xs, ys, xs2, ys2, zs, zs2) → addLists(xs2, ys2, zs)
if(false, false, true, xs, ys, xs2, ys2, zs, zs2) → addLists(xs, ys, zs2)
addList(xs, ys) → addLists(xs, ys, nil)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(cons(y, ys), x) → APPEND(ys, x)
P(s(s(x))) → P(s(x))
INC(s(x)) → INC(x)
ADDLISTS(xs, ys, zs) → IF(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys)))
ADDLISTS(xs, ys, zs) → ISEMPTY(xs)
ADDLISTS(xs, ys, zs) → ISEMPTY(ys)
ADDLISTS(xs, ys, zs) → ISZERO(head(xs))
ADDLISTS(xs, ys, zs) → HEAD(xs)
ADDLISTS(xs, ys, zs) → TAIL(xs)
ADDLISTS(xs, ys, zs) → TAIL(ys)
ADDLISTS(xs, ys, zs) → P(head(xs))
ADDLISTS(xs, ys, zs) → INC(head(ys))
ADDLISTS(xs, ys, zs) → HEAD(ys)
ADDLISTS(xs, ys, zs) → APPEND(zs, head(ys))
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLIST(xs, ys) → ADDLISTS(xs, ys, nil)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
addLists(xs, ys, zs) → if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys)))
if(true, true, b, xs, ys, xs2, ys2, zs, zs2) → zs
if(true, false, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, true, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, false, false, xs, ys, xs2, ys2, zs, zs2) → addLists(xs2, ys2, zs)
if(false, false, true, xs, ys, xs2, ys2, zs, zs2) → addLists(xs, ys, zs2)
addList(xs, ys) → addLists(xs, ys, nil)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 11 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INC(s(x)) → INC(x)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
addLists(xs, ys, zs) → if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys)))
if(true, true, b, xs, ys, xs2, ys2, zs, zs2) → zs
if(true, false, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, true, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, false, false, xs, ys, xs2, ys2, zs, zs2) → addLists(xs2, ys2, zs)
if(false, false, true, xs, ys, xs2, ys2, zs, zs2) → addLists(xs, ys, zs2)
addList(xs, ys) → addLists(xs, ys, nil)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INC(s(x)) → INC(x)
R is empty.
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INC(s(x)) → INC(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- INC(s(x)) → INC(x)
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(s(s(x))) → P(s(x))
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
addLists(xs, ys, zs) → if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys)))
if(true, true, b, xs, ys, xs2, ys2, zs, zs2) → zs
if(true, false, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, true, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, false, false, xs, ys, xs2, ys2, zs, zs2) → addLists(xs2, ys2, zs)
if(false, false, true, xs, ys, xs2, ys2, zs, zs2) → addLists(xs, ys, zs2)
addList(xs, ys) → addLists(xs, ys, nil)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(s(s(x))) → P(s(x))
R is empty.
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P(s(s(x))) → P(s(x))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P(s(s(x))) → P(s(x))
The graph contains the following edges 1 > 1
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(cons(y, ys), x) → APPEND(ys, x)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
addLists(xs, ys, zs) → if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys)))
if(true, true, b, xs, ys, xs2, ys2, zs, zs2) → zs
if(true, false, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, true, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, false, false, xs, ys, xs2, ys2, zs, zs2) → addLists(xs2, ys2, zs)
if(false, false, true, xs, ys, xs2, ys2, zs, zs2) → addLists(xs, ys, zs2)
addList(xs, ys) → addLists(xs, ys, nil)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(cons(y, ys), x) → APPEND(ys, x)
R is empty.
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND(cons(y, ys), x) → APPEND(ys, x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APPEND(cons(y, ys), x) → APPEND(ys, x)
The graph contains the following edges 1 > 1, 2 >= 2
(27) YES
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADDLISTS(xs, ys, zs) → IF(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys)))
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
isZero(0) → true
isZero(s(x)) → false
head(cons(x, xs)) → x
tail(cons(x, xs)) → xs
tail(nil) → nil
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
addLists(xs, ys, zs) → if(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys)))
if(true, true, b, xs, ys, xs2, ys2, zs, zs2) → zs
if(true, false, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, true, b, xs, ys, xs2, ys2, zs, zs2) → differentLengthError
if(false, false, false, xs, ys, xs2, ys2, zs, zs2) → addLists(xs2, ys2, zs)
if(false, false, true, xs, ys, xs2, ys2, zs, zs2) → addLists(xs, ys, zs2)
addList(xs, ys) → addLists(xs, ys, nil)
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(29) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADDLISTS(xs, ys, zs) → IF(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys)))
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(31) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
addLists(x0, x1, x2)
if(true, true, x0, x1, x2, x3, x4, x5, x6)
if(true, false, x0, x1, x2, x3, x4, x5, x6)
if(false, true, x0, x1, x2, x3, x4, x5, x6)
if(false, false, false, x0, x1, x2, x3, x4, x5)
if(false, false, true, x0, x1, x2, x3, x4, x5)
addList(x0, x1)
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADDLISTS(xs, ys, zs) → IF(isEmpty(xs), isEmpty(ys), isZero(head(xs)), tail(xs), tail(ys), cons(p(head(xs)), tail(xs)), cons(inc(head(ys)), tail(ys)), zs, append(zs, head(ys)))
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(33) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ADDLISTS(
xs,
ys,
zs) →
IF(
isEmpty(
xs),
isEmpty(
ys),
isZero(
head(
xs)),
tail(
xs),
tail(
ys),
cons(
p(
head(
xs)),
tail(
xs)),
cons(
inc(
head(
ys)),
tail(
ys)),
zs,
append(
zs,
head(
ys))) at position [0] we obtained the following new rules [LPAR04]:
ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(head(cons(x0, x1))), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) → ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(head(cons(x0, x1))), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
ADDLISTS(nil, y1, y2) → IF(true, isEmpty(y1), isZero(head(nil)), tail(nil), tail(y1), cons(p(head(nil)), tail(nil)), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) → ADDLISTS(nil, y1, y2) → IF(true, isEmpty(y1), isZero(head(nil)), tail(nil), tail(y1), cons(p(head(nil)), tail(nil)), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(head(cons(x0, x1))), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
ADDLISTS(nil, y1, y2) → IF(true, isEmpty(y1), isZero(head(nil)), tail(nil), tail(y1), cons(p(head(nil)), tail(nil)), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(35) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(head(cons(x0, x1))), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(37) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
ADDLISTS(
cons(
x0,
x1),
y1,
y2) →
IF(
false,
isEmpty(
y1),
isZero(
head(
cons(
x0,
x1))),
tail(
cons(
x0,
x1)),
tail(
y1),
cons(
p(
head(
cons(
x0,
x1))),
tail(
cons(
x0,
x1))),
cons(
inc(
head(
y1)),
tail(
y1)),
y2,
append(
y2,
head(
y1))) at position [2,0] we obtained the following new rules [LPAR04]:
ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(x0), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) → ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(x0), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(x0), tail(cons(x0, x1)), tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(39) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
ADDLISTS(
cons(
x0,
x1),
y1,
y2) →
IF(
false,
isEmpty(
y1),
isZero(
x0),
tail(
cons(
x0,
x1)),
tail(
y1),
cons(
p(
head(
cons(
x0,
x1))),
tail(
cons(
x0,
x1))),
cons(
inc(
head(
y1)),
tail(
y1)),
y2,
append(
y2,
head(
y1))) at position [3] we obtained the following new rules [LPAR04]:
ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) → ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(head(cons(x0, x1))), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(41) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
ADDLISTS(
cons(
x0,
x1),
y1,
y2) →
IF(
false,
isEmpty(
y1),
isZero(
x0),
x1,
tail(
y1),
cons(
p(
head(
cons(
x0,
x1))),
tail(
cons(
x0,
x1))),
cons(
inc(
head(
y1)),
tail(
y1)),
y2,
append(
y2,
head(
y1))) at position [5,0,0] we obtained the following new rules [LPAR04]:
ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) → ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), tail(cons(x0, x1))), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(43) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
ADDLISTS(
cons(
x0,
x1),
y1,
y2) →
IF(
false,
isEmpty(
y1),
isZero(
x0),
x1,
tail(
y1),
cons(
p(
x0),
tail(
cons(
x0,
x1))),
cons(
inc(
head(
y1)),
tail(
y1)),
y2,
append(
y2,
head(
y1))) at position [5,1] we obtained the following new rules [LPAR04]:
ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), x1), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1))) → ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), x1), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(x0, x1), y1, y2) → IF(false, isEmpty(y1), isZero(x0), x1, tail(y1), cons(p(x0), x1), cons(inc(head(y1)), tail(y1)), y2, append(y2, head(y1)))
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(45) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ADDLISTS(
cons(
x0,
x1),
y1,
y2) →
IF(
false,
isEmpty(
y1),
isZero(
x0),
x1,
tail(
y1),
cons(
p(
x0),
x1),
cons(
inc(
head(
y1)),
tail(
y1)),
y2,
append(
y2,
head(
y1))) at position [1] we obtained the following new rules [LPAR04]:
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))) → ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1))))
ADDLISTS(cons(y0, y1), nil, y3) → IF(false, true, isZero(y0), y1, tail(nil), cons(p(y0), y1), cons(inc(head(nil)), tail(nil)), y3, append(y3, head(nil))) → ADDLISTS(cons(y0, y1), nil, y3) → IF(false, true, isZero(y0), y1, tail(nil), cons(p(y0), y1), cons(inc(head(nil)), tail(nil)), y3, append(y3, head(nil)))
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1))))
ADDLISTS(cons(y0, y1), nil, y3) → IF(false, true, isZero(y0), y1, tail(nil), cons(p(y0), y1), cons(inc(head(nil)), tail(nil)), y3, append(y3, head(nil)))
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(47) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1))))
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
The TRS R consists of the following rules:
isEmpty(cons(x, xs)) → false
isEmpty(nil) → true
head(cons(x, xs)) → x
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
tail(nil) → nil
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(49) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1))))
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
head(cons(x, xs)) → x
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isEmpty(cons(x0, x1))
isEmpty(nil)
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(51) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
isEmpty(cons(x0, x1))
isEmpty(nil)
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, tail(cons(x0, x1)), cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1))))
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
head(cons(x, xs)) → x
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(53) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
ADDLISTS(
cons(
y0,
y1),
cons(
x0,
x1),
y3) →
IF(
false,
false,
isZero(
y0),
y1,
tail(
cons(
x0,
x1)),
cons(
p(
y0),
y1),
cons(
inc(
head(
cons(
x0,
x1))),
tail(
cons(
x0,
x1))),
y3,
append(
y3,
head(
cons(
x0,
x1)))) at position [4] we obtained the following new rules [LPAR04]:
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))) → ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1))))
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(head(cons(x0, x1))), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1))))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
head(cons(x, xs)) → x
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(55) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
ADDLISTS(
cons(
y0,
y1),
cons(
x0,
x1),
y3) →
IF(
false,
false,
isZero(
y0),
y1,
x1,
cons(
p(
y0),
y1),
cons(
inc(
head(
cons(
x0,
x1))),
tail(
cons(
x0,
x1))),
y3,
append(
y3,
head(
cons(
x0,
x1)))) at position [6,0,0] we obtained the following new rules [LPAR04]:
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1)))) → ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1))))
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), tail(cons(x0, x1))), y3, append(y3, head(cons(x0, x1))))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
head(cons(x, xs)) → x
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(57) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
ADDLISTS(
cons(
y0,
y1),
cons(
x0,
x1),
y3) →
IF(
false,
false,
isZero(
y0),
y1,
x1,
cons(
p(
y0),
y1),
cons(
inc(
x0),
tail(
cons(
x0,
x1))),
y3,
append(
y3,
head(
cons(
x0,
x1)))) at position [6,1] we obtained the following new rules [LPAR04]:
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, head(cons(x0, x1)))) → ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, head(cons(x0, x1))))
(58) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, head(cons(x0, x1))))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
tail(cons(x, xs)) → xs
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
head(cons(x, xs)) → x
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(59) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, head(cons(x0, x1))))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
head(cons(x, xs)) → x
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
tail(cons(x0, x1))
tail(nil)
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(61) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail(cons(x0, x1))
tail(nil)
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, head(cons(x0, x1))))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
head(cons(x, xs)) → x
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(63) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
ADDLISTS(
cons(
y0,
y1),
cons(
x0,
x1),
y3) →
IF(
false,
false,
isZero(
y0),
y1,
x1,
cons(
p(
y0),
y1),
cons(
inc(
x0),
x1),
y3,
append(
y3,
head(
cons(
x0,
x1)))) at position [8,1] we obtained the following new rules [LPAR04]:
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, x0)) → ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, x0))
(64) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, x0))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
head(cons(x, xs)) → x
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(65) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(66) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, x0))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
head(cons(x0, x1))
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(67) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
head(cons(x0, x1))
(68) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(y0, y1), cons(x0, x1), y3) → IF(false, false, isZero(y0), y1, x1, cons(p(y0), y1), cons(inc(x0), x1), y3, append(y3, x0))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(69) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ADDLISTS(
cons(
y0,
y1),
cons(
x0,
x1),
y3) →
IF(
false,
false,
isZero(
y0),
y1,
x1,
cons(
p(
y0),
y1),
cons(
inc(
x0),
x1),
y3,
append(
y3,
x0)) at position [2] we obtained the following new rules [LPAR04]:
ADDLISTS(cons(0, y1), cons(y2, y3), y4) → IF(false, false, true, y1, y3, cons(p(0), y1), cons(inc(y2), y3), y4, append(y4, y2)) → ADDLISTS(cons(0, y1), cons(y2, y3), y4) → IF(false, false, true, y1, y3, cons(p(0), y1), cons(inc(y2), y3), y4, append(y4, y2))
ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) → IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2)) → ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) → IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2))
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(0, y1), cons(y2, y3), y4) → IF(false, false, true, y1, y3, cons(p(0), y1), cons(inc(y2), y3), y4, append(y4, y2))
ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) → IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2))
The TRS R consists of the following rules:
isZero(0) → true
isZero(s(x)) → false
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
p(0) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(71) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(72) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(0, y1), cons(y2, y3), y4) → IF(false, false, true, y1, y3, cons(p(0), y1), cons(inc(y2), y3), y4, append(y4, y2))
ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) → IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2))
The TRS R consists of the following rules:
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(0) → 0
The set Q consists of the following terms:
isZero(0)
isZero(s(x0))
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(73) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
isZero(0)
isZero(s(x0))
(74) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(0, y1), cons(y2, y3), y4) → IF(false, false, true, y1, y3, cons(p(0), y1), cons(inc(y2), y3), y4, append(y4, y2))
ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) → IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2))
The TRS R consists of the following rules:
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(0) → 0
The set Q consists of the following terms:
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(75) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
ADDLISTS(
cons(
0,
y1),
cons(
y2,
y3),
y4) →
IF(
false,
false,
true,
y1,
y3,
cons(
p(
0),
y1),
cons(
inc(
y2),
y3),
y4,
append(
y4,
y2)) at position [5,0] we obtained the following new rules [LPAR04]:
ADDLISTS(cons(0, y1), cons(y2, y3), y4) → IF(false, false, true, y1, y3, cons(0, y1), cons(inc(y2), y3), y4, append(y4, y2)) → ADDLISTS(cons(0, y1), cons(y2, y3), y4) → IF(false, false, true, y1, y3, cons(0, y1), cons(inc(y2), y3), y4, append(y4, y2))
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) → IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2))
ADDLISTS(cons(0, y1), cons(y2, y3), y4) → IF(false, false, true, y1, y3, cons(0, y1), cons(inc(y2), y3), y4, append(y4, y2))
The TRS R consists of the following rules:
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(0) → 0
The set Q consists of the following terms:
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(77) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(78) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
IF(false, false, true, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs, ys, zs2)
ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) → IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2))
ADDLISTS(cons(0, y1), cons(y2, y3), y4) → IF(false, false, true, y1, y3, cons(0, y1), cons(inc(y2), y3), y4, append(y4, y2))
The TRS R consists of the following rules:
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
The set Q consists of the following terms:
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(79) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF(
false,
false,
true,
xs,
ys,
xs2,
ys2,
zs,
zs2) →
ADDLISTS(
xs,
ys,
zs2) we obtained the following new rules [LPAR04]:
IF(false, false, true, z0, z2, cons(0, z0), cons(y_0, z2), z3, y_1) → ADDLISTS(z0, z2, y_1) → IF(false, false, true, z0, z2, cons(0, z0), cons(y_0, z2), z3, y_1) → ADDLISTS(z0, z2, y_1)
(80) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) → IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2))
ADDLISTS(cons(0, y1), cons(y2, y3), y4) → IF(false, false, true, y1, y3, cons(0, y1), cons(inc(y2), y3), y4, append(y4, y2))
IF(false, false, true, z0, z2, cons(0, z0), cons(y_0, z2), z3, y_1) → ADDLISTS(z0, z2, y_1)
The TRS R consists of the following rules:
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
The set Q consists of the following terms:
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(81) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF(false, false, true, z0, z2, cons(0, z0), cons(y_0, z2), z3, y_1) → ADDLISTS(z0, z2, y_1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9) =
x7
ADDLISTS(
x1,
x2,
x3) =
x2
cons(
x1,
x2) =
cons(
x2)
Knuth-Bendix order [KBO] with precedence:
trivial
and weight map:
dummyConstant=1
cons_1=1
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
none
(82) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) → IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2))
ADDLISTS(cons(0, y1), cons(y2, y3), y4) → IF(false, false, true, y1, y3, cons(0, y1), cons(inc(y2), y3), y4, append(y4, y2))
The TRS R consists of the following rules:
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
The set Q consists of the following terms:
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(83) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(84) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) → IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2))
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
The TRS R consists of the following rules:
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
The set Q consists of the following terms:
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(85) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF(false, false, false, xs, ys, xs2, ys2, zs, zs2) → ADDLISTS(xs2, ys2, zs)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( IF(x1, ..., x9) ) = x1 + x2 + 2x6 + 2 |
POL( p(x1) ) = max{0, x1 - 1} |
POL( append(x1, x2) ) = 0 |
POL( ADDLISTS(x1, ..., x3) ) = 2x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
(86) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADDLISTS(cons(s(x0), y1), cons(y2, y3), y4) → IF(false, false, false, y1, y3, cons(p(s(x0)), y1), cons(inc(y2), y3), y4, append(y4, y2))
The TRS R consists of the following rules:
inc(s(x)) → s(inc(x))
inc(0) → s(0)
append(nil, x) → cons(x, nil)
append(cons(y, ys), x) → cons(y, append(ys, x))
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
The set Q consists of the following terms:
append(nil, x0)
append(cons(x0, x1), x2)
p(s(s(x0)))
p(s(0))
p(0)
inc(s(x0))
inc(0)
We have to consider all minimal (P,Q,R)-chains.
(87) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(88) TRUE