(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
DIV(x, y) → IFY(ge(y, s(0)), x, y)
DIV(x, y) → GE(y, s(0))
IFY(true, x, y) → IF(ge(x, y), x, y)
IFY(true, x, y) → GE(x, y)
IF(true, x, y) → DIV(minus(x, y), y)
IF(true, x, y) → MINUS(x, y)
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), s(y)) → MINUS(x, y)
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), s(y)) → MINUS(x, y)
R is empty.
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), s(y)) → MINUS(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MINUS(s(x), s(y)) → MINUS(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
R is empty.
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GE(s(x), s(y)) → GE(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(x, y) → IFY(ge(y, s(0)), x, y)
IFY(true, x, y) → IF(ge(x, y), x, y)
IF(true, x, y) → DIV(minus(x, y), y)
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(x, y) → IFY(ge(y, s(0)), x, y)
IFY(true, x, y) → IF(ge(x, y), x, y)
IF(true, x, y) → DIV(minus(x, y), y)
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(x, y) → IFY(ge(y, s(0)), x, y)
IFY(true, x, y) → IF(ge(x, y), x, y)
IF(true, x, y) → DIV(minus(x, y), y)
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(26) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
DIV(
x,
y) →
IFY(
ge(
y,
s(
0)),
x,
y) at position [0] we obtained the following new rules [LPAR04]:
DIV(y0, 0) → IFY(false, y0, 0) → DIV(y0, 0) → IFY(false, y0, 0)
DIV(y0, s(x0)) → IFY(ge(x0, 0), y0, s(x0)) → DIV(y0, s(x0)) → IFY(ge(x0, 0), y0, s(x0))
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFY(true, x, y) → IF(ge(x, y), x, y)
IF(true, x, y) → DIV(minus(x, y), y)
DIV(y0, 0) → IFY(false, y0, 0)
DIV(y0, s(x0)) → IFY(ge(x0, 0), y0, s(x0))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, x, y) → DIV(minus(x, y), y)
DIV(y0, s(x0)) → IFY(ge(x0, 0), y0, s(x0))
IFY(true, x, y) → IF(ge(x, y), x, y)
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(30) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
DIV(
y0,
s(
x0)) →
IFY(
ge(
x0,
0),
y0,
s(
x0)) at position [0] we obtained the following new rules [LPAR04]:
DIV(y0, s(x0)) → IFY(true, y0, s(x0)) → DIV(y0, s(x0)) → IFY(true, y0, s(x0))
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, x, y) → DIV(minus(x, y), y)
IFY(true, x, y) → IF(ge(x, y), x, y)
DIV(y0, s(x0)) → IFY(true, y0, s(x0))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(32) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IFY(
true,
x,
y) →
IF(
ge(
x,
y),
x,
y) at position [0] we obtained the following new rules [LPAR04]:
IFY(true, x0, 0) → IF(true, x0, 0) → IFY(true, x0, 0) → IF(true, x0, 0)
IFY(true, 0, s(x0)) → IF(false, 0, s(x0)) → IFY(true, 0, s(x0)) → IF(false, 0, s(x0))
IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1)) → IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, x, y) → DIV(minus(x, y), y)
DIV(y0, s(x0)) → IFY(true, y0, s(x0))
IFY(true, x0, 0) → IF(true, x0, 0)
IFY(true, 0, s(x0)) → IF(false, 0, s(x0))
IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(34) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(y0, s(x0)) → IFY(true, y0, s(x0))
IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
IF(true, x, y) → DIV(minus(x, y), y)
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(36) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IF(
true,
x,
y) →
DIV(
minus(
x,
y),
y) we obtained the following new rules [LPAR04]:
IF(true, s(z0), s(z1)) → DIV(minus(s(z0), s(z1)), s(z1)) → IF(true, s(z0), s(z1)) → DIV(minus(s(z0), s(z1)), s(z1))
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(y0, s(x0)) → IFY(true, y0, s(x0))
IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
IF(true, s(z0), s(z1)) → DIV(minus(s(z0), s(z1)), s(z1))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(38) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IF(
true,
s(
z0),
s(
z1)) →
DIV(
minus(
s(
z0),
s(
z1)),
s(
z1)) at position [0] we obtained the following new rules [LPAR04]:
IF(true, s(z0), s(z1)) → DIV(minus(z0, z1), s(z1)) → IF(true, s(z0), s(z1)) → DIV(minus(z0, z1), s(z1))
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(y0, s(x0)) → IFY(true, y0, s(x0))
IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
IF(true, s(z0), s(z1)) → DIV(minus(z0, z1), s(z1))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(40) TransformationProof (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
DIV(
y0,
s(
x0)) →
IFY(
true,
y0,
s(
x0)) we obtained the following new rules [LPAR04]:
DIV(s(y_0), s(x1)) → IFY(true, s(y_0), s(x1)) → DIV(s(y_0), s(x1)) → IFY(true, s(y_0), s(x1))
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
IF(true, s(z0), s(z1)) → DIV(minus(z0, z1), s(z1))
DIV(s(y_0), s(x1)) → IFY(true, s(y_0), s(x1))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(42) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
IF(
true,
s(
z0),
s(
z1)) →
DIV(
minus(
z0,
z1),
s(
z1)) at position [0] we obtained the following new rules [LPAR04]:
IF(true, s(x0), s(0)) → DIV(x0, s(0)) → IF(true, s(x0), s(0)) → DIV(x0, s(0))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1))) → IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
DIV(s(y_0), s(x1)) → IFY(true, s(y_0), s(x1))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(44) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
DIV(
s(
y_0),
s(
x1)) →
IFY(
true,
s(
y_0),
s(
x1)) we obtained the following new rules [LPAR04]:
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0)) → DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1))) → DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(46) TransformationProof (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
IFY(
true,
s(
x0),
s(
x1)) →
IF(
ge(
x0,
x1),
s(
x0),
s(
x1)) we obtained the following new rules [LPAR04]:
IFY(true, s(z0), s(0)) → IF(ge(z0, 0), s(z0), s(0)) → IFY(true, s(z0), s(0)) → IF(ge(z0, 0), s(z0), s(0))
IFY(true, s(z0), s(s(z1))) → IF(ge(z0, s(z1)), s(z0), s(s(z1))) → IFY(true, s(z0), s(s(z1))) → IF(ge(z0, s(z1)), s(z0), s(s(z1)))
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF(true, s(x0), s(0)) → DIV(x0, s(0))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))
IFY(true, s(z0), s(0)) → IF(ge(z0, 0), s(z0), s(0))
IFY(true, s(z0), s(s(z1))) → IF(ge(z0, s(z1)), s(z0), s(s(z1)))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(48) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(49) Complex Obligation (AND)
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))
IFY(true, s(z0), s(s(z1))) → IF(ge(z0, s(z1)), s(z0), s(s(z1)))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(51) TransformationProof (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
IFY(
true,
s(
z0),
s(
s(
z1))) →
IF(
ge(
z0,
s(
z1)),
s(
z0),
s(
s(
z1))) we obtained the following new rules [LPAR04]:
IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(s(y_1), s(x1)), s(s(y_1)), s(s(x1))) → IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(s(y_1), s(x1)), s(s(y_1)), s(s(x1)))
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(s(y_1), s(x1)), s(s(y_1)), s(s(x1)))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(53) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IFY(
true,
s(
s(
y_1)),
s(
s(
x1))) →
IF(
ge(
s(
y_1),
s(
x1)),
s(
s(
y_1)),
s(
s(
x1))) at position [0] we obtained the following new rules [LPAR04]:
IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(y_1, x1), s(s(y_1)), s(s(x1))) → IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(y_1, x1), s(s(y_1)), s(s(x1)))
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(y_1, x1), s(s(y_1)), s(s(x1)))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(55) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( DIV(x1, x2) ) = 2x1 + 2x2 + 2 |
POL( minus(x1, x2) ) = 2x1 + 1 |
POL( IF(x1, ..., x3) ) = max{0, 2x1 + 2x2 + 2x3 - 2} |
POL( IFY(x1, ..., x3) ) = 2x2 + 2x3 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))
IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(y_1, x1), s(s(y_1)), s(s(x1)))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(57) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(58) TRUE
(59) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IFY(true, s(z0), s(0)) → IF(ge(z0, 0), s(z0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(60) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IFY(true, s(z0), s(0)) → IF(ge(z0, 0), s(z0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
The TRS R consists of the following rules:
ge(x, 0) → true
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(62) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
minus(x0, 0)
minus(s(x0), s(x1))
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IFY(true, s(z0), s(0)) → IF(ge(z0, 0), s(z0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
The TRS R consists of the following rules:
ge(x, 0) → true
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(64) TransformationProof (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
IFY(
true,
s(
z0),
s(
0)) →
IF(
ge(
z0,
0),
s(
z0),
s(
0)) at position [0] we obtained the following new rules [LPAR04]:
IFY(true, s(z0), s(0)) → IF(true, s(z0), s(0)) → IFY(true, s(z0), s(0)) → IF(true, s(z0), s(0))
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
IFY(true, s(z0), s(0)) → IF(true, s(z0), s(0))
The TRS R consists of the following rules:
ge(x, 0) → true
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(66) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
IFY(true, s(z0), s(0)) → IF(true, s(z0), s(0))
R is empty.
The set Q consists of the following terms:
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(68) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
(69) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
IFY(true, s(z0), s(0)) → IF(true, s(z0), s(0))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(70) TransformationProof (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
IF(
true,
s(
x0),
s(
0)) →
DIV(
x0,
s(
0)) we obtained the following new rules [LPAR04]:
IF(true, s(s(y_0)), s(0)) → DIV(s(y_0), s(0)) → IF(true, s(s(y_0)), s(0)) → DIV(s(y_0), s(0))
(71) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IFY(true, s(z0), s(0)) → IF(true, s(z0), s(0))
IF(true, s(s(y_0)), s(0)) → DIV(s(y_0), s(0))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(72) TransformationProof (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
IFY(
true,
s(
z0),
s(
0)) →
IF(
true,
s(
z0),
s(
0)) we obtained the following new rules [LPAR04]:
IFY(true, s(s(y_0)), s(0)) → IF(true, s(s(y_0)), s(0)) → IFY(true, s(s(y_0)), s(0)) → IF(true, s(s(y_0)), s(0))
(73) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IF(true, s(s(y_0)), s(0)) → DIV(s(y_0), s(0))
IFY(true, s(s(y_0)), s(0)) → IF(true, s(s(y_0)), s(0))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(74) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- IFY(true, s(s(y_0)), s(0)) → IF(true, s(s(y_0)), s(0))
The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3
- IF(true, s(s(y_0)), s(0)) → DIV(s(y_0), s(0))
The graph contains the following edges 2 > 1, 3 >= 2
- DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
The graph contains the following edges 1 >= 2, 2 >= 3
(75) YES