YES Termination w.r.t. Q proof of SK90_4.28.ari

(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Combined order from the following AFS and order.
f(x1, x2)  =  f(x1, x2)
nil  =  nil
g(x1, x2)  =  g(x1, x2)
++(x1, x2)  =  ++(x1, x2)
null(x1)  =  null(x1)
true  =  true
false  =  false
mem(x1, x2)  =  mem(x1, x2)
or(x1, x2)  =  or(x1, x2)
=(x1, x2)  =  =(x1, x2)
max(x1)  =  x1
not(x1)  =  x1
max'(x1, x2)  =  max'(x1, x2)
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
f2 > nil > g2 > or2 > =2
f2 > nil > g2 > u > max'2 > =2
++2 > g2 > or2 > =2
++2 > g2 > u > max'2 > =2
mem2 > [null1, false] > true > =2
mem2 > or2 > =2

Status:
f2: multiset
nil: multiset
g2: multiset
++2: multiset
null1: multiset
true: multiset
false: multiset
mem2: multiset
or2: multiset
=2: multiset
max'2: multiset
u: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
++(x, nil) → x
++(x, g(y, z)) → g(++(x, y), z)
null(nil) → true
null(g(x, y)) → false
mem(nil, y) → false
mem(g(x, y), z) → or(=(y, z), mem(x, z))
mem(x, max(x)) → not(null(x))
max(g(g(nil, x), y)) → max'(x, y)
max(g(g(g(x, y), z), u)) → max'(max(g(g(x, y), z)), u)


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) YES