YES
0 QTRS
↳1 QTRSRRRProof (⇔, 0 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 0 ms)
↳4 QTRS
↳5 QTRSRRRProof (⇔, 1 ms)
↳6 QTRS
↳7 RisEmptyProof (⇔, 0 ms)
↳8 YES
flatten(nil) → nil
flatten(unit(x)) → flatten(x)
flatten(++(x, y)) → ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) → ++(flatten(x), flatten(y))
flatten(flatten(x)) → flatten(x)
rev(nil) → nil
rev(unit(x)) → unit(x)
rev(++(x, y)) → ++(rev(y), rev(x))
rev(rev(x)) → x
++(x, nil) → x
++(nil, y) → y
++(++(x, y), z) → ++(x, ++(y, z))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(++(x1, x2)) = 2 + x1 + x2
POL(flatten(x1)) = 2 + 2·x1
POL(nil) = 2
POL(rev(x1)) = 2 + 2·x1
POL(unit(x1)) = 1 + x1
flatten(nil) → nil
flatten(unit(x)) → flatten(x)
flatten(++(unit(x), y)) → ++(flatten(x), flatten(y))
flatten(flatten(x)) → flatten(x)
rev(nil) → nil
rev(unit(x)) → unit(x)
rev(rev(x)) → x
++(x, nil) → x
++(nil, y) → y
flatten(++(x, y)) → ++(flatten(x), flatten(y))
rev(++(x, y)) → ++(rev(y), rev(x))
++(++(x, y), z) → ++(x, ++(y, z))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(++(x1, x2)) = 1 + x1 + x2
POL(flatten(x1)) = 2·x1
POL(rev(x1)) = 2·x1
flatten(++(x, y)) → ++(flatten(x), flatten(y))
rev(++(x, y)) → ++(rev(y), rev(x))
++(++(x, y), z) → ++(x, ++(y, z))
trivial
++_2=0
++(++(x, y), z) → ++(x, ++(y, z))