YES
0 QTRS
↳1 QTRSRRRProof (⇔, 0 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 8 ms)
↳4 QTRS
↳5 QTRSRRRProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 0 ms)
↳8 QTRS
↳9 RisEmptyProof (⇔, 0 ms)
↳10 YES
if(true, x, y) → x
if(false, x, y) → y
if(x, y, y) → y
if(if(x, y, z), u, v) → if(x, if(y, u, v), if(z, u, v))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(false) = 0
POL(if(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3
POL(true) = 2
POL(u) = 0
POL(v) = 0
if(true, x, y) → x
if(false, x, y) → y
if(x, y, y) → y
if(if(x, y, z), u, v) → if(x, if(y, u, v), if(z, u, v))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(false) = 2
POL(if(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3
POL(u) = 0
POL(v) = 0
if(false, x, y) → y
if(x, y, y) → y
if(if(x, y, z), u, v) → if(x, if(y, u, v), if(z, u, v))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(if(x1, x2, x3)) = 1 + 2·x1 + x2 + x3
POL(u) = 0
POL(v) = 0
if(x, y, y) → y
if(if(x, y, z), u, v) → if(x, if(y, u, v), if(z, u, v))
[u, v] > if3
if3: [1,3,2]
u: multiset
v: multiset
if(if(x, y, z), u, v) → if(x, if(y, u, v), if(z, u, v))