YES
0 QTRS
↳1 QTRSRRRProof (⇔, 0 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 9 ms)
↳4 QTRS
↳5 RisEmptyProof (⇔, 0 ms)
↳6 YES
not(x) → if(x, false, true)
and(x, y) → if(x, y, false)
or(x, y) → if(x, true, y)
implies(x, y) → if(x, y, true)
=(x, x) → true
=(x, y) → if(x, y, not(y))
if(true, x, y) → x
if(false, x, y) → y
if(x, x, if(x, false, true)) → true
=(x, y) → if(x, y, if(y, false, true))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(=(x1, x2)) = 2 + x1 + 2·x2
POL(and(x1, x2)) = 2 + 2·x1 + 2·x2
POL(false) = 1
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(implies(x1, x2)) = 1 + x1 + 2·x2
POL(not(x1)) = 2 + x1
POL(or(x1, x2)) = 1 + 2·x1 + 2·x2
POL(true) = 0
not(x) → if(x, false, true)
and(x, y) → if(x, y, false)
or(x, y) → if(x, true, y)
implies(x, y) → if(x, y, true)
=(x, x) → true
if(false, x, y) → y
if(x, x, if(x, false, true)) → true
=(x, y) → if(x, y, if(y, false, true))
=(x, y) → if(x, y, not(y))
if(true, x, y) → x
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(=(x1, x2)) = 2 + 2·x1 + 2·x2
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(not(x1)) = x1
POL(true) = 1
=(x, y) → if(x, y, not(y))
if(true, x, y) → x